Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Heliyon ; 10(9): e30291, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737258

ABSTRACT

Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercritical-fluid extraction (SFE) of non-psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave-assisted trans-esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell-free and cell-based antioxidant and anti-inflammatory assays were then performed to assess their bioactivity. HPLC-ELSED analysis of the purified mixture from hemp wax revealed C26OH and C28OH as the main compounds. In vitro assays indicated an inhibition of intracellular reactive oxygen species (ROS) production, a reduction of nuclear factor kappa B (NF-κB) activation and of the activity of the neutrophil elastase. Immunoblotting assays allowed us to hypothesize the mechanism of action of the compounds of interest, given the higher levels of MAPK-activated protein kinase 2 (MK2) and heme oxygenase-1 (HO-1) protein expression in the PC pretreated HaCaT cells. In conclusion, even if more research is needed to unveil other molecular mechanisms involved in hemp PC activity, the results of this work suggest that these compounds may have potential for use in oxinflammation processes.

2.
ACS Infect Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717116

ABSTRACT

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.

3.
J Nutr Biochem ; 127: 109607, 2024 May.
Article in English | MEDLINE | ID: mdl-38432453

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with obesity and diabetes prevalence. The use of natural compounds has become an attractive approach to prevent NAFLD and its progression. Gamma-oryzanol (Orz) is a natural compound whose beneficial effects on chronic metabolic diseases have been reported. Therefore, we aimed to investigate the preventive effect of Orz on the hepatic proteome in a diet induced NAFLD model. Wistar rats were randomly distributed into three experimental groups (n=6/group) according to the diet received for 30 weeks: Control group, high sugar-fat (HSF) group, and HSF+Orz group. The isolated Orz was added to the chow at the dose of 0.5% (w/w). We evaluated the nutritional profile, characterized the presence of steatosis through histological analysis, triglyceride content in liver tissue and hepatic inflammation. Next, we performed label-free quantitative proteomics of hepatic tissue. Network analysis was performed to describe involved protein pathways. NAFLD induction was characterized by the presence of hepatic steatosis. Orz prevented lipid accumulation. The compound prevented alterations of the hepatic proteome, highlighted by the modulation of lipid metabolism, inflammation, oxidative stress, xenobiotic metabolism, and the sirtuin signaling pathway. It was possible to identify key altered pathways of NAFLD pathophysiology modulated by Orz which may provide insights into NAFLD treatment targets.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Phenylpropionates , Rats , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/drug therapy , Proteome/metabolism , Proteomics , Rats, Wistar , Liver/metabolism , Diet , Lipid Metabolism , Inflammation/metabolism , Diet, High-Fat/adverse effects
4.
J Biochem Mol Toxicol ; 38(2): e23644, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38348714

ABSTRACT

The nonalcoholic fatty liver disease (NAFLD), which is closely related to westernized dietary (WD) patterns, displays a rising epidemiological and economic burden. Since there is no pharmacological therapy approved for this disease, mechanistic studies are warranted. In this work, we investigated the action of carnosine (CAR), a natural dipeptide with several protection roles against oxidative stress in the liver of NAFLD rats. NAFLD was induced by WD-rich sugars and fat, verifying the histological evidence of steatosis. As intraperitoneal administration of CAR reversed liver steatosis, the protein profiles of NAFLD liver and CAR NAFLD liver were evaluated by label-free proteomics approach. A total of 2531 proteins were identified and the 230 and 276 were significantly up- and downregulated, respectively, by CAR treatment of NAFLD rats and involved in fundamental pathways such as oxidative stress and lipid metabolism. Perilipin 2 and apolipoprotein E, components of the plasma membrane of vesicle, resulted in highly downregulated in the CAR-treated NAFLD liver. The advanced bioanalytical approach demonstrated the efficacy of CAR in overcoming the main symptoms of NAFLD, ameliorating the steatosis in the liver.


Subject(s)
Carnosine , Non-alcoholic Fatty Liver Disease , Humans , Rats , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/chemically induced , Carnosine/pharmacology , Carnosine/therapeutic use , Diet, Western/adverse effects , Proteomics/methods , Liver/metabolism , Models, Animal , Diet, High-Fat , Lipid Metabolism , Disease Models, Animal
5.
RSC Adv ; 14(9): 6410-6415, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38380241

ABSTRACT

Deuterated proanthocyanidin metabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone has been successfully produced. This metabolite is responsible for several proanthocyanidin protective effects in the field of cancer chemoprevention, skin wrinkle-prevention, and antimicrobials. The synthetic approach applied employs a short reaction sequence and allows the incorporation of four deuterium atoms on non-exchangeable sites, making it an attractive strategy to produce a stable isotopically labeled internal standard for quantitative mass spectrometry isotope dilution-based methods, as demonstrated by developing an LC-MS/MS method to quantify DHPV in urine samples. Overall, this efficient synthesis provides a valuable analytical tool for the study of the metabolic conversion of proanthocyanidins thus helping to investigate the biological effect and establishing the active dose of the key catabolite 5-(3',4'-dihydroxyphenyl)-γ-valerolactone.

6.
Bioorg Chem ; 144: 107164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38306824

ABSTRACT

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Subject(s)
Lung Neoplasms , Melanoma, Experimental , Animals , Mice , Septins , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Lung Neoplasms/drug therapy , Paclitaxel , Disease Models, Animal , Mice, Inbred C57BL
7.
Mol Cell Endocrinol ; 582: 112138, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38147954

ABSTRACT

Consumption of diets high in sugar and fat is related to the development of Metabolic dysfunction-associated steatotic liver disease (MASLD). Carnosine (CAR) is a dipeptide with antioxidant and anti-inflammatory action and has been studied for treating diseases. This work aimed to evaluate the effects of CAR on diet-induced MASLD in rats. Male Wistar rats were distributed into 2 groups (17 weeks): normocaloric (Co, n = 12), and hypercaloric diet rich in lipids and simple carbohydrates (MASLD, n = 12). After, the animals were redistributed to begin the treatment with CAR (4 weeks): Co (n = 6), Co + CAR (n = 6), MASLD (n = 6), and MASLD + CAR (n = 6), administered intraperitoneally (250 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; hepatic steatosis, inflammatory and oxidative markers. MASLD group had a higher adiposity index, systolic blood pressure, glucose, plasma and liver triglycerides and cholesterol, insulin, hepatic steatosis, oxidative markers, and lower PPAR-α (Peroxisome Proliferator-activated receptor α), compared to the Co. CAR attenuated plasma and hepatic triglyceride and cholesterol levels, hepatic steatosis, CD68+ macrophages, and hepatic oxidative markers, in addition to increasing HDL cholesterol levels and PPAR-α, compared to the untreated MASLD group. CAR acts in importants pathophysiological processes of MASLD and may be a therapeutic compound to control the disease.


Subject(s)
Carnosine , Fatty Liver , Metabolic Diseases , Male , Animals , Rats , Rats, Wistar , Carnosine/pharmacology , Carnosine/therapeutic use , Peroxisome Proliferator-Activated Receptors , Diet , Cholesterol , Dietary Supplements
8.
BMC Ophthalmol ; 23(1): 502, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066465

ABSTRACT

BACKGROUND: To assess oxidative effects induced by a high-calorie diet on the retina of Wistar rats and test the antioxidative effects of carnosine supplementation. METHODS: Wistar rats were randomly divided into the following groups: standard diet (SD), high-calorie diet (HcD), standard diet + carnosine (SD + Car), and high-calorie diet + carnosine (HcD + Car). The body weight, adiposity index, plasma glucose, total lipids, high-density lipoprotein (HDL), low-density lipoprotein (LDL), uric acid, creatinine, and triglycerides of the animals were evaluated. The retinas were analyzed for markers of oxidative stress. Hydrogen peroxide production was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCF) oxidation. The total glutathione (tGSH), total antioxidant capacity (TAC), protein carbonyl, and sulfhydryl groups of the antioxidant system were analyzed. RESULTS: TAC levels increased in the retinas of the SD + Car group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the HcD group (p < 0.05). The levels of GSH and the GSSH:GSSG ratio were increased in the HcD + Car group compared to the SD + Car group (p < 0.05). An increase in the retinal carbonyl content was observed in the HcD group compared to the SD group (p < 0.05) and in the HcD + Car group compared to the SD + Car group (p < 0.05). A high-calorie diet (HcD) was also associated with a decrease in retinal sulfhydryl-type levels compared to the SD group (p < 0.05). CONCLUSION: The results suggest that feeding a high-calorie diet to rats can promote an increase in carbonyl content and a reduction in sulfhydryl groups in their retinas. The administration of carnosine was not effective in attenuating these oxidative markers. TRIAL REGISTRATION: Animal Ethics Committee of Botucatu Medical School - Certificate number 1292/2019.


Subject(s)
Antioxidants , Carnosine , Rats , Animals , Antioxidants/pharmacology , Carnosine/pharmacology , Rats, Wistar , Oxidative Stress , Diet , Dietary Supplements
9.
Nutr Rev ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086332

ABSTRACT

CONTEXT: Carnosine and histidine-containing dipeptides (HCDs) are suggested to have anti-inflammatory and antioxidative benefits, but their effects on circulating adipokines and inflammatory and oxidative stress biomarkers remain unclear. OBJECTIVES: The aim of the present systematic review and meta-analysis was to determine the impact of HCD supplementation on inflammatory and oxidative stress biomarkers. DATA SOURCES: A systematic search was performed on Medline via Ovid, Scopus, Embase, ISI Web of Science, and the Cochrane Library databases from inception to 25 January 2023. DATA EXTRACTION: Using relevant key words, trials investigating the effects of carnosine/HCD supplementation on markers of inflammation and oxidative stress, including C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), adiponectin, malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), total antioxidant capacity (TAC), and catalase (CAT) were identified. Meta-analyses were conducted using random-effects models to calculate the weighted mean differences (WMDs) and 95% confidence intervals (CIs). DATA ANALYSIS: A total of 9 trials comprising 350 participants were included in the present meta-analysis. Carnosine/HCD supplementation led to a significant reduction in CRP (WMD: -0.97 mg/L; 95% CI: -1.59, -0.36), TNF-α (WMD: -3.60 pg/mL; 95% CI: -7.03, -0.18), and MDA (WMD: -0.34 µmol/L; 95% CI: -0.56, -0.12) and an elevation in CAT (WMD: 4.48 U/mL; 95% CI: 2.43, 6.53) compared with placebo. In contrast, carnosine/HCD supplementation had no effect on IL-6, adiponectin, GSH, SOD, and TAC levels. CONCLUSION: Carnosine/HCD supplementation may reduce inflammatory and oxidative stress biomarkers, and potentially modulate the cardiometabolic risks associated with chronic low-grade inflammation and lipid peroxidation. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42017075354.

10.
Biomolecules ; 13(12)2023 11 28.
Article in English | MEDLINE | ID: mdl-38136584

ABSTRACT

Recent evidence indicates that reactive oxygen species play an important causative role in the onset and progression of valvular diseases. Here, we analyzed the oxidative modifications of albumin (HSA) occurring on Cysteine 34 and the antioxidant capacity of the serum in 44 patients with severe aortic stenosis (36 patients underwent aortic valve replacement and 8 underwent a second aortic valve substitution due to a degenerated bioprosthetic valve), and in 10 healthy donors (controls). Before surgical intervention, patients showed an increase in the oxidized form of albumin (HSA-Cys), a decrease in the native reduced form (HSA-SH), and a significant reduction in serum free sulfhydryl groups and in the total serum antioxidant activity. Patients undergoing a second valve replacement showed levels of HSA-Cys, free sulfhydryl groups, and total antioxidant activity similar to those of controls. In vitro incubation of whole blood with aspirin (ASA) significantly increased the free sulfhydryl groups, suggesting that the in vivo treatment with ASA may contribute to reducing oxidative stress. We also found that N-acetylcysteine and its amide derivative were able to regenerate HSA-SH. In conclusion, the systemic oxidative stress reflected by high levels of HSA-Cys is increased in patients with aortic valve stenosis. Thiol-disulfide breaking agents regenerate HSA-SH, thus paving the way to the use these compounds to mitigate the oxidative stress occurring in the disease.


Subject(s)
Antioxidants , Aortic Valve Stenosis , Humans , Serum Albumin , Oxidative Stress , Acetylcysteine/pharmacology , Sulfhydryl Compounds
11.
Molecules ; 28(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513248

ABSTRACT

Diet can modulate the different stages of inflammation due to the presence of bioactive compounds such as polyphenols. Apples are a great source of phenolic compounds that show anti-inflammatory and antioxidant properties, and these might be used as a dietary supplement and/or functional element in the treatment of chronic inflammatory illnesses. The aim of our study was to evaluate the anti-inflammatory and antioxidant actions of thinned apple polyphenol (TAP) extracts in a model of paw edema. The experimental model was induced in rats via subplantar injections of 1% λ-Carrageenan (CAR) in the right hind leg, and TAP extract was administered via oral gavage 30 min before and 1 h after the CAR injection at doses of 5 mg/kg and 10 mg/kg, respectively. The inflammatory response is usually quantified by the increase in the size of the paw (edema), which is maximal about 5 h after the injection of CAR. CAR-induced inflammation generates the release of pro-inflammatory mediators and reactive oxygen species (ROS). Furthermore, the inflammatory state induces the pain that involves the peripheral nociceptors, but above all it acts centrally at the level of the spinal cord. Our results showed that the TAP extracts reduced paw histological changes, neutrophil infiltration, mast cell degranulation, and oxidative stress. Additionally, the oral administration of TAP extracts decreased thermal and mechanical hyperalgesia, along with a reduction in spinal microglia and the markers of nociception. In conclusion, we demonstrate that TAP extract is able to modulate inflammatory, oxidative, and painful processes, and is also useful in the treatment of the symptoms associated with paw edema.


Subject(s)
NF-E2-Related Factor 2 , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/therapeutic use , Polyphenols/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Carrageenan/toxicity , Inflammation/metabolism , Plant Extracts/therapeutic use , Pain/drug therapy , Signal Transduction , Hyperalgesia/drug therapy , Edema/chemically induced , Edema/drug therapy , Edema/metabolism
12.
Int J Mol Sci ; 24(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37373157

ABSTRACT

The lipid profile of skin is fundamental in the maintenance of the protective barrier against the external environment. Signaling and constitutive lipids of this large organ are involved in inflammation, metabolism, aging, and wound healing, such as phospholipids, triglycerides, FFA, and sphingomyelin. Skin exposure to ultraviolet (UV) radiation results in a photoaging process that is an accelerated form of aging. UV-A radiation deeply penetrates the dermis and promotes damage to DNA, lipids, and proteins by increasing the generation of reactive oxygen species (ROS). Carnosine, an endogenous ß-alanyl-L-histidine dipeptide, demonstrated antioxidant properties that prevent photoaging and modification of skin protein profiling, making carnosine a compelling ingredient to consider for use in dermatology. The aim of this research was to investigate the modification of skin lipidome after UV-A treatment in presence or not of topic administration of carnosine. Quantitative analyses based on high-resolution mass spectrometry of nude mice skin-extracted lipids resulted in several modifications of barrier composition after UV-A radiation, with or without carnosine treatment. In total, 328 out of 683 molecules showed significant alteration-262 after UV-A radiation and 126 after UV-A and carnosine treatment versus controls. Importantly, the increased oxidized TGs after UV-A radiation, responsible of dermis photoaging, were completely reverted by carnosine application to prevent the UV-A damage. Network analyses also showed that the production of ROS and the calcium and TNF signaling were modulated by UV-A and carnosine. In conclusion, lipidome analyses attested the carnosine activity to prevent the UV-A damage, reducing the lipid oxidation, the inflammation, and the dysregulation of lipid skin barrier.


Subject(s)
Carnosine , Skin Aging , Skin Diseases , Animals , Mice , Carnosine/pharmacology , Carnosine/chemistry , Mice, Nude , Reactive Oxygen Species/metabolism , Lipidomics , Ultraviolet Rays/adverse effects , Phospholipids , Inflammation
13.
Molecules ; 28(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37049725

ABSTRACT

The present paper reports a sustainable raw material obtained from the by-products derived from the industrial production of bergamot (Citrus × Bergamia Risso & Poiteau) essential oils. The procedure to obtain the raw material is designed to maintain as much of the bioactive components as possible and to avoid expensive chemical purification. It consists of spray-drying the fruit juice obtained by squeezing the fruits, which is mixed with the aqueous extract of the pulp, i.e., the solid residue remained after fruit pressing. The resulting powder bergamot juice (PBJ) contains multiple bioactive components, in particular, among others, soluble fibers, polyphenols and amino-acid betaines, such as stachydrine and betonicine. LC-MS analysis identified 86 compounds, with hesperetin, naringenin, apigenin and eridictyol glucosides being the main components. In the second part of the paper, dose-dependent anti-inflammatory activity of PBJ and of stachydrine was found, but neither of the compounds were effective in activating Nrf2. PBJ was then found to be effective in an in vivo model of a metabolic syndrome induced by a high-sugar, high-fat (HSF) diet and evidenced by a significant increase of the values related to a set of parameters: blood glucose, triglycerides, insulin resistance, systolic blood pressure, visceral adipose tissue and adiposity index. PBJ, when given to control rats, did not significantly change these values; in contrast, they were found to be greatly affected in rats receiving an HSF diet. The in vivo effect of PBJ can be ascribed not only to bergamot polyphenols with well-known anti-inflammatory, antioxidant and lipid-regulating effects, but also to the dietary fibers and to the non-phenolic constituents, such as stachydrine. Moreover, since PBJ was found to affect energy homeostasis and to regulate food intake, a mechanism on the regulation of energy homeostasis through leptin networking should also be considered and deserves further investigation.


Subject(s)
Citrus , Oils, Volatile , Animals , Rats , Oils, Volatile/pharmacology , Polyphenols/pharmacology , Polyphenols/chemistry , Phytochemicals/pharmacology , Mass Spectrometry , Citrus/chemistry , Anti-Inflammatory Agents/pharmacology
14.
Mol Cell Endocrinol ; 566-567: 111908, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36868453

ABSTRACT

Low-grade chronic inflammation in obesity is associated with leptin resistance. In order to alleviate this pathological condition, bioactive compounds capable of attenuating oxidative stress and inflammation have been researched, and bergamot (Citrus bergamia) presents these properties. The aim was to evaluate the effect of bergamot leaves extract on leptin resistance in obese rats. Animals were divided into 2 groups: control diet (C, n = 10) and high sugar-fat diet (HSF, n = 20) for 20 weeks. After detecting hyperleptinemia, animals were divided to begin the treatment with bergamot leaves extract (BLE) for 10 weeks: C + placebo (n = 7), HSF + placebo (n = 7), and HSF + BLE (n = 7) by gavage (50 mg/kg). Evaluations included nutritional, hormonal and metabolic parameters; adipose tissue dysfunction; inflammatory, oxidative markers and hypothalamic leptin pathway. HSF group presented obesity, metabolic syndrome, adipose tissue dysfunction, hyperleptinemia and leptin resistance compared to control group. However, the treated group showed a decrease in caloric consumption and attenuation of insulin resistance. Moreover, dyslipidemia, adipose tissue function, and leptin levels showed an improvement. At the level of the hypothalamus, the treated group showed a reduction of oxidative stress, inflammation and modulation of leptin signaling. In conclusion, BLE properties were able to improve leptin resistance through recovery of the hypothalamic pathway.


Subject(s)
Citrus , Leptin , Rats , Animals , Leptin/metabolism , Citrus/metabolism , Obesity/metabolism , Inflammation/drug therapy , Inflammation/complications , Diet, High-Fat , Plant Leaves/metabolism
15.
Molecules ; 28(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771023

ABSTRACT

Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.


Subject(s)
Malus , Neoplasms , Humans , NF-kappa B/metabolism , Malus/metabolism , NF-E2-Related Factor 2/metabolism , Signal Transduction , Neoplasms/prevention & control , Neoplasms/metabolism , Phytochemicals/pharmacology , Phytochemicals/therapeutic use
16.
Int J Mol Sci ; 24(3)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36768458

ABSTRACT

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.


Subject(s)
Allosteric Site , Humans , Ligands , Receptors, Cannabinoid , Allosteric Regulation
17.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36829859

ABSTRACT

Dermis fibroblasts are very sensitive to penetrating UVA radiation and induce photo-damage. To protect skin cells against this environmental damage, there is an urgent need for effective compounds, specifically targeting UVA-induced mitochondrial injury. This study aimed to analyze the effect of carnosine on the proteome of UVA-irradiated human skin fibroblast, cultured in a three-dimensional (3D) biological system recapitulating dermal compartment as a test system to investigate the altered cellular pathways after 48 h and 7 days of culture with or without carnosine treatment. The obtained results indicate that UVA dysregulates Oxidative Phosphorylation, the Fibrosis Signaling Pathway, Glycolysis I and Nrf2-mediated Oxidative Stress Response. Carnosine exercises provide a protective function against the harmful effects of UVA radiation by activating the Nrf2 pathway with the upregulations of some ROS-detoxifying enzymes such as the glutathione S-transferase (GST) protein family. Additionally, carnosine regulates the activation of the Epithelial Adherens Junction and Wound Healing Signaling Pathway by mediating the activation of structural proteins such as vinculin and zyxin as well as fibronectin 1 and collagen type XVIII alpha 1 chain against UVA-induced changes.

18.
Int J Food Sci Nutr ; 74(1): 64-71, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36519349

ABSTRACT

Metabolic Syndrome (MetS), inflammation and oxidative stress contribute to impairment of skeletal muscle function. Bergamot (Citrus bergamia) leaf extract (BLE) has shown protective effects against comorbidities associated with MetS through its anti-inflammatory and antioxidant effects. The aim of this work was to elucidate the antioxidant and anti-inflammatory activity of BLE in skeletal muscles in an experimental model of MetS. Once metabolic syndrome was diagnosed, animals were divided into groups receiving different treatments for 10 weeks, including control diet (n = 10), control + BLE (n = 10), High Sugar-fat diet (HSF) (n = 10), HSF + BLE (n = 10). Evaluation included nutritional, metabolic and hormonal analyses, along with measurements of inflammatory status and oxidative stress in soleus and extensor digitorum longus (EDL) muscles. BLE showed positive metabolic effects, with a reduction of plasma triglycerides and insulin resistance and an increase in high-density lipoprotein cholesterol, and protective activity against oxidative stress and inflammation in Soleus and EDL muscles in animals with MetS.


Subject(s)
Citrus , Metabolic Syndrome , Oils, Volatile , Animals , Antioxidants/metabolism , Muscle, Skeletal/metabolism , Diet, High-Fat , Anti-Inflammatory Agents , Inflammation/metabolism , Plant Extracts
19.
Mass Spectrom Rev ; 42(4): 1113-1128, 2023.
Article in English | MEDLINE | ID: mdl-34747521

ABSTRACT

The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.


Subject(s)
Albumins , Cardiovascular Diseases , Heart Failure , Humans , Proteome/metabolism , Proteomics
20.
Talanta ; 252: 123824, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36027618

ABSTRACT

Mpro represents one of the most promising drug targets for SARS-Cov-2, as it plays a crucial role in the maturation of viral polyproteins into functional proteins. HTS methods are currently used to screen Mpro inhibitors, and rely on searching chemical databases and compound libraries, meaning that they only consider previously structurally clarified and isolated molecules. A great advancement in the hit identification strategy would be to set-up an approach aimed at exploring un-deconvoluted mixtures of compounds such as plant extracts. Hence, the aim of the present study is to set-up an analytical platform able to fish-out bioactive molecules from complex natural matrices even where there is no knowledge on the constituents. The proposed approach begins with a metabolomic step aimed at annotating the MW of the matrix constituents. A further metabolomic step is based on identifying those natural electrophilic compounds able to form a Michael adduct with thiols, a peculiar chemical feature of many Mpro inhibitors that covalently bind the catalytic Cys145 in the active site, thus stabilizing the complex. A final step consists of incubating recombinant Mpro with natural extracts and identifying compounds adducted to the residues within the Mpro active site by bottom-up proteomic analysis (nano-LC-HRMS). Data analysis is based on two complementary strategies: (i) a targeted search applied by setting the adducted moieties identified as Michael acceptors of Cys as variable modifications; (ii) an untargeted approach aimed at identifying the whole range of adducted peptides containing Cys145 on the basis of the characteristic b and y fragment ions independent of the adduct. The method was set-up and then successfully tested to fish-out bioactive compounds from the crude extract of Scutellaria baicalensis, a Chinese plant containing the catechol-like flavonoid baicalin and its corresponding aglycone baicalein which are well-established inhibitors of Mpro. Molecular dynamics (MD) simulations were carried out in order to explore the binding mode of baicalin and baicalein, within the SARS-CoV-2 Mpro active site, allowing a better understanding of the role of the nucleophilic residues (i.e. His41, Cys145, His163 and His164) in the protein-ligand recognition process.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Coronavirus 3C Proteases , Peptide Hydrolases , Proteomics , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Molecular Docking Simulation , Complex Mixtures , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...