ABSTRACT
The Brazilian semiarid region presents a physical water scarcity and high seasonal and interannual irregularities of precipitation, known as a region with periodic droughts. This region is mainly covered by the Caatinga biome, recognized as a Seasonally Dry Tropical Forest (SDTF). Soil water availability directly impacts the ecosystem's functioning, characterized by low fertility and sparse vegetation cover during the dry season, making it a fragile ecosystem vulnerable to climatic variations. Additionally, this region has been suffering from several issues due to human activities over the centuries, which has resulted in extensive areas being severely degraded, which aggravates the impacts from climatic variations and the susceptibility to desertification. Thus, studying the soil-plant-atmosphere continuum in this region can help better understand the seasonal and annual behavior of the water and carbon fluxes. This study investigated the dynamics of water and carbon fluxes during four years (2013-2016) by using eddy covariance (EC) measurements within two areas of Caatinga (dense Caatinga (DC) and sparse Caatinga (SC)) that suffered anthropic pressures. The two study areas showed similar behavior in relation to physical parameters (air temperature, incoming radiation, vapor pressure deficit, and relative humidity), except for soil temperature. The SC area presented a surface temperature of 3 °C higher than the DC, related to their vegetation cover differences. The SC area had higher annual evapotranspiration, representing 74% of the precipitation for the DC area and 90% for the SC area. The two areas acted as a carbon sink during the study period, with the SC area showing a lower CO2 absorption capacity. On average, the DC area absorbs 2.5 times more carbon than the SC area, indicating that Caatinga deforestation affects evaporative fluxes, reducing atmospheric carbon fixation and influencing the ability to mitigate the effects of increased greenhouse gas concentrations in the atmosphere.
Subject(s)
Ecosystem , Soil , Carbon , Carbon Cycle , Humans , WaterABSTRACT
Arid and semi-arid environments correspond to one-third of the Earth's terrestrial surface. In these environments, precipitation is an essential and limiting element for vegetation growth and ecosystem biomass productivity. The semi-arid region of Brazil comprises around 11.5% of the national territory, where the Caatinga biome originally composed ~ 76% of this area, with water deficit as a prominent feature, annual rainfall lower than 800 mm, temperatures ranging between 25 and 30 °C, and potential evapotranspiration higher than 2000 mm/year. Research on the dynamics of mass and heat fluxes through techniques such as eddy covariance (EC) has contributed to estimate the magnitude and seasonal patterns of turbulent exchanges between ecosystems and the atmosphere. This study was conducted in an area of dense Caatinga (DC) and another of sparse Caatinga (SC) from 2013 to 2014. It was observed that albedo (α) and net radiation (Rn) were higher in the SC compared with DC since the magnitude of incoming shortwave radiation was higher in this area. It was found that most of the Rn is converted to sensible heat flux (H), mainly during the dry period in the SC, about 50% for H and 20% for λE. The energy balance closure showed that the turbulent fluxes (H + λE) were underestimated in comparison to the available energy at the surface (Rn - G). We also observed that this discrepancy was higher in the DC area, corresponding to ~ 30%.
Subject(s)
Ecosystem , Environmental Monitoring , Brazil , Forests , SeasonsABSTRACT
Forest ecosystems sequester large amounts of atmospheric CO2, and the contribution from seasonally dry tropical forests is not negligible. Thus, the objective of this study was to quantify and evaluate the seasonal and annual patterns of CO2 exchanges in the Caatinga biome, as well as to evaluate the ecosystem condition as carbon sink or source during years. In addition, we analyzed the climatic factors that control the seasonal variability of gross primary production (GPP), ecosystem respiration (Reco) and net ecosystem CO2 exchange (NEE). Results showed that the dynamics of the components of the CO2 fluxes varied depending on the magnitude and distribution of rainfall and, as a consequence, on the variability of the vegetation state. Annual cumulative NEE was significantly higher (p < 0.01) in 2014 (-169.0 g C m-2) when compared to 2015 (-145.0 g C m-2) and annual NEP/GPP ratio was 0.41 in 2014 and 0.43 in 2015. Global radiation, air and soil temperature were the main factors associated with the diurnal variability of carbon fluxes. Even during the dry season, the NEE was at equilibrium and the Caatinga acted as an atmospheric carbon sink during the years 2014 and 2015.