Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Antibiotics (Basel) ; 12(3)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36978368

ABSTRACT

The current study aimed to investigate the phytochemical contents and antioxidant, antimicrobial, and antibiofilm activities of four halophytic plants, namely, Euphorbia chamaesyce, Bassia arabica, Fagonia mollis, and Haloxylon salicornicum, native to central Saudi Arabia. The alcoholic extract of E. chamaesyce was found to be the most potent in various bioactivities-based evaluations and rich in polyphenols and flavonoid secondary metabolites, with 68.0 mg/g and 39.23 mg/g gallic acid and quercetin equivalents, respectively. Among all plants' extracts, the alcoholic extract of E. chamaesyce had the highest DPPH scavenging and metal chelating antioxidant activities at 74.15 Trolox equivalents and 16.28 EDTA equivalents, respectively. The highest antimicrobial activity of E. chamaesyce extract was found to be against Shigella flexneri, with a mean zone of inhibition diameter of 18.1 ± 0.2 mm, whereas the minimum inhibitory concentration, minimum biocidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration values were 12.5, 25, 25, and 50 mg/mL, respectively. The LC-ESI-MS/MS analysis of the E. chamaesyce extract showed the presence of six flavonoids and ten phenolic constituents. The in silico binding of the E. chamaesyce extract's constituents to Staphylococcus aureus tyrosyl-tRNA synthetase enzyme displayed -6.2 to -10.1 kcal/mol binding energy values, suggesting that these constituents can contribute to the antimicrobial properties of the plant extract, making it an essential medicinal ingredient. In conclusion, these results warrant further investigation to standardize the antimicrobial profiles of these plant extracts.

2.
Vaccines (Basel) ; 11(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36992237

ABSTRACT

Brucellosis is considered one of the most serious zoonotic diseases worldwide. This disease affects both human and animal health, in addition to being one of the most widespread zoonotic illnesses in the Middle East and Northern Africa. Human brucellosis generally presents in a diverse and non-specific manner, making laboratory confirmation of the diagnosis critical to the patient's recovery. A coordinated strategy for diagnosing and controlling brucellosis throughout the Middle East is required, as this disease cannot be known to occur without reliable microbiological, molecular, and epidemiological evidence. Consequently, the current review focuses on the current and emerging microbiological diagnostic tools for the early detection and control of human brucellosis. Laboratory assays such as culturing, serology, and molecular analysis can frequently be used to diagnose brucellosis. Although serological markers and nucleic acid amplification techniques are extremely sensitive, and extensive experience has been gained with these techniques in the laboratory diagnosis of brucellosis, a culture is still considered to be the "gold standard" due to the importance of this aspect of public health and clinical care. In endemic regions, however, serological tests remain the primary method of diagnosis due to their low cost, user-friendliness, and strong ability to provide a negative prediction, so they are commonly used. A nucleic acid amplification assay, which is highly sensitive, specific, and safe, is capable of enabling rapid disease diagnosis. Patients who have reportedly fully healed may continue to have positive molecular test results for a long time. Therefore, cultures and serological methods will continue to be the main tools for diagnosing and following up on human brucellosis for as long as no commercial tests or studies demonstrate adequate interlaboratory reproducibility. As there is no approved vaccine that prevents human brucellosis, vaccination-based control of animal brucellosis has become an important part of the management of human brucellosis. Over the past few decades, several studies have been conducted to develop Brucella vaccines, but the problem of controlling brucellosis in both humans and animals remains challenging. Therefore, this review also aims to present an updated overview of the different types of brucellosis vaccines that are currently available.

3.
Antibiotics (Basel) ; 12(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36830102

ABSTRACT

Helicobacter pylori (H. pylori) infection, which affects approximately half of the world's population, remains a serious public health problem. As H. pylori infection leads to a number of gastric pathologies, including inflammation, gastroduodenal ulcers, and malignancies, early detection and treatment are crucial to preventing the spread of the infection. Multiple extragastric complications, such as iron deficiency anaemia, immune thrombocytopenic purpura, vitamin B12 deficiency, diabetes mellitus, cardiovascular diseases, and certain neurological disorders, have also been linked to H. pylori infection. An awareness of H. pylori and associated health hazards is necessary to minimize or even eradicate the infection. Therefore, there is an urgent need to raise the standards for the currently employed diagnostic, eradication, alternative treatment strategies. In addition, a brief overview of traditional and cutting-edge approaches that have proven effective in identifying and managing H. pylori is needed. Based on the test and laboratory equipment available and patient clinical characteristics, the optimal diagnostic approach requires weighing several factors. The pathophysiology and pathogenic mechanisms of H. pylori should also be studied, focusing more on the infection-causing virulence factors of this bacterium. Accordingly, this review aims to demonstrate the various diagnostic, pathophysiological, therapeutic, and eradication tactics available for H. pylori, emphasizing both their advantages and disadvantages. Invasive methods (such as quick urease testing, biopsy, or culture) or noninvasive methods (such as breath tests, stool investigations, or serological tests) can be used. We also present the most recent worldwide recommendations along with scientific evidence for treating H. pylori. In addition to the current antibiotic regimens, alternative therapies may also be considered. It is imperative to eradicate the infections caused by H. pylori as soon as possible to prevent problems and the development of stomach cancer. In conclusion, significant advances have been made in identifying and treating H. pylori. To improve eradication rates, peptide mass fingerprinting can be used as a diagnostic tool, and vaccines can also eliminate the infection.

4.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36366389

ABSTRACT

Healthcare settings have been utilizing matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) since 2010. MALDI-TOF MS has various benefits over the conventional method of biochemical identification, including ease of use, speed, accuracy, and low cost. This approach can solve many of the obstacles to identifying bacteria, fungi and viruses. As technology advanced, more and more databases kept track of spectra, allowing species with similar morphological, genotypic, and biochemical traits to be identified. Using MALDI-TOF MS for identification has become more accurate and quicker due to advances in sample preparation and database enrichment. Rapid sample detection and colony identification using MALDI-TOF MS have produced promising results. A key application of MALDI-TOF MS is quickly identifying highly virulent and drug-resistant diseases. Here, we present a review of the scientific literature assessing the effectiveness of MALDI-TOF MS for locating clinically relevant pathogenic bacteria, fungi, and viruses. MALDI-TOF MS is a useful strategy for locating clinical pathogens, however, it also has some drawbacks. A small number of spectra in the database and inherent similarities among organisms can make it difficult to distinguish between different species, which can result in misidentifications. The majority of the time additional testing may correct these problems, which happen very seldom. In conclusion, infectious illness diagnosis and clinical care are being revolutionized by the use of MALDI-TOF MS in the clinical microbiology laboratory.

5.
PLoS One ; 17(7): e0269963, 2022.
Article in English | MEDLINE | ID: mdl-35834538

ABSTRACT

Brucellosis is an endemic zoonotic disease caused by Brucella species, which are intramacrophage pathogens that make treating this disease challenging. The negative effects of the treatment regime have prompted the development of new antimicrobials against brucellosis. A new treatment modality for antibiotic-resistant microorganisms is the use of nanoparticles (NPs). In this study, we examined the antibacterial activities of silver and gold NPs (SNPs and GNPs, respectively), the resistance developed by Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) strains and the toxicity of both of these NPs in experimental rats. To test the bactericidal effects of the SNPs and GNPs, we used 22 multidrug-resistant Brucella isolates (10 B. melitensis and 12 B. abortus). The minimal inhibitory concentrations (MICs) of both types of NPs were determined utilizing the microdilution technique. To test the stability of resistance, 7 B. melitensis and 6 B. abortus isolates were passaged ten times in culture with subinhibitory concentrations of NPs and another ten times without NPs. Histopathological analysis was completed after rats were given 0.25, 0.5, 1, and 2 mg/kg NPs orally for 28 consecutive days. The MIC values (µg/ml) of the 10-nm SNPs and 20-nm GNPs against B. melitensis were 22.43 ± 2.32 and 13.56 ± 1.22, while these values were 18.77 ± 1.33 and 12.45 ± 1.59 for B. abortus, respectively. After extensive in vitro exposure, most strains showed no resistance to the 10-nm SNPs or 20-nm GNPs. The NPs and antibiotics did not cross-react in any of the evolved Brucella strains. SNPs and GNPs at doses below 2 mg/kg were not harmful to rat tissue according to organ histopathological examinations. However, a greater dose of NPs (2 mg/kg) harmed all of the tissues studied. The bactericidal properties of NPs are demonstrated in this work. Brucella strains develop similar resistance to SNPs and GNPs, and at low dosages, neither SNPs nor GNPs were hazardous to rats.


Subject(s)
Anti-Bacterial Agents , Brucella , Brucellosis , Gold , Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/toxicity , Brucella/drug effects , Brucella abortus/drug effects , Brucella melitensis/drug effects , Brucellosis/drug therapy , Brucellosis/epidemiology , Gold/pharmacology , Gold/therapeutic use , Gold/toxicity , Gold Compounds/pharmacology , Gold Compounds/therapeutic use , Gold Compounds/toxicity , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/toxicity , Rats , Silver/pharmacology , Silver/therapeutic use , Silver/toxicity , Silver Compounds/pharmacology , Silver Compounds/therapeutic use , Silver Compounds/toxicity
6.
AMB Express ; 12(1): 53, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35532863

ABSTRACT

Psychrotrophic Pseudomonas is one of the significant microbes that lead to putrefaction in chilled meat. One of the biggest problems in the detection of Pseudomonas is that several species are seemingly identical. Currently, antibiotic resistance is one of the most significant challenges facing the world's health and food security. Therefore, this study was designed to apply an accurate technique for eliminating the identification discrepancy of Pseudomonas species and to study their resistance against various antimicrobials. A total of 320 chicken meat specimens were cultivated, and the isolated bacteria' were phenotypically recognized. Protein analysis was carried out for cultured isolates via Microflex LT. The resistance of Pseudomonas isolates was recorded through Vitek® 2 AST-GN83 cards. Overall, 69 samples were identified as Pseudomonas spp. and included 18 Pseudomonas lundensis (P. lundensis), 16 Pseudomonas fragi (P. fragi), 13 Pseudomonas oryzihabitans (P. oryzihabitans), 10 Pseudomonas stutzeri (P. stutzeri), 5 Pseudomonas fluorescens (P. fluorescens), 4 Pseudomonas putida (P. putida), and 3 Pseudomonas aeruginosa (P. aeruginosa) isolates. Microflex LT identified all Pseudomonas isolates (100%) correctly with a score value ≥ 2.00. PCA positively discriminated the identified isolates into various groups. The antimicrobial resistance levels against Pseudomonas isolates were 81.16% for nitrofurantoin, 71% for ampicillin and ampicillin/sulbactam, 65.22% for cefuroxime and ceftriaxone, 55% for aztreonam, and 49.28% for ciprofloxacin. The susceptibilities were 100% for cefotaxime, 98.55% for ceftazidime, 94.20% for each piperacillin/tazobactam and cefepime, 91.3% for cefazolin. In conclusion, chicken meat was found to be contaminated with different Pseudomonas spp., with high incidence rates of P. lundensis. Microflex LT is a potent tool for distinguishing Pseudomonads at the species level.

7.
PLoS One ; 17(1): e0262551, 2022.
Article in English | MEDLINE | ID: mdl-35025975

ABSTRACT

Brucellae are intracellular sneaky bacteria and they can elude the host's defensive mechanisms, resulting in therapeutic failure. Therefore, the goal of this investigation was to rapid identification of Brucella species collected from animals and humans in Saudi Arabia, as well as to evaluate their resistance to antibiotics. On selective media, 364 animal samples as well as 70 human blood samples were cultured. Serological and biochemical approaches were initially used to identify a total of 25 probable cultured isolates. The proteomics of Brucella species were identified using the MALDI Biotyper (MBT) system, which was subsequently verified using real-time polymerase chain reaction (real-time PCR) and microfluidic electrophoresis assays. Both Brucella melitensis (B. melitensis) and Brucella abortus (B. abortus) were tested for antimicrobial susceptibility using Kirby Bauer method and the E-test. In total, 25 samples were positive for Brucella and included 11 B. melitensis and 14 B. abortus isolates. Twenty-two out of 25 (88%) and 24/25 (96%) of Brucella strains were recognized through the Vitek 2 Compact system. While MBT was magnificently identified 100% of the strains at the species level with a score value more than or equal to 2.00. Trimethoprim-sulfamethoxazole, rifampin, ampicillin-sulbactam, and ampicillin resistance in B. melitensis was 36.36%, 31.82%, 27.27%, and 22.70%, respectively. Rifampin, trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam resistance was found in 35.71%, 32.14%, 32.14%, and 28.57% of B. abortus isolates, correspondingly. MBT confirmed by microfluidic electrophoresis is a successful approach for identifying Brucella species at the species level. The resistance of B. melitensis and B. abortus to various antibiotics should be investigated in future studies.


Subject(s)
Brucella/genetics , Brucellosis/diagnosis , Drug Resistance, Microbial/genetics , Animals , Anti-Bacterial Agents/pharmacology , Brucella/isolation & purification , Brucella/pathogenicity , Brucellosis/drug therapy , Brucellosis/microbiology , Cattle , DNA, Bacterial , Drug Evaluation, Preclinical/methods , Drug Resistance, Microbial/drug effects , Genotype , Goats , Humans , Infection Control , Proteomics/methods , Real-Time Polymerase Chain Reaction/methods , Saudi Arabia
8.
Virol J ; 17(1): 77, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32552831

ABSTRACT

BACKGROUND: Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging virus that infects humans and camels with no approved antiviral therapy or vaccine. Some vaccines are in development for camels as a one-health intervention where vaccinating camels is proposed to reduce human viral exposure. This intervention will require an understanding of the prior exposure of camels to the virus and appropriate vaccine efficacy studies in camels. METHODS: We conducted a cross sectional seroprevalence study in young dromedary camels to determine the rate of MERS-CoV seropositivity in young camels. Next, we utilised naturally infected camels as a natural challenge model that can be used by co-housing these camels with healthy naive camels in a ratio of 1 to 2. This model is aimed to support studies on natural virus transmission as well as evaluating drug and vaccine efficacy. RESULTS: We found that 90% of the screened camels have pre-existing antibodies for MERS-CoV. In addition, the challenge model resulted in MERS-CoV transmission within 48 h with infections that continued for 14 days post challenge. CONCLUSIONS: Our finding suggests that the majority of young dromedary camels in Saudi Arabia are seropositive and that naturally infected camels can serve as a challenge model to assess transmission, therapeutics, and vaccine efficacy.


Subject(s)
Camelus/virology , Coronavirus Infections/veterinary , Disease Models, Animal , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Antibodies, Viral/blood , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Cross-Sectional Studies , Saudi Arabia/epidemiology , Seroepidemiologic Studies , Vaccination/veterinary
9.
Sci Rep ; 9(1): 16292, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31705137

ABSTRACT

MERS-CoV seronegative and seropositive camels received a single intramuscular dose of ChAdOx1 MERS, a replication-deficient adenoviral vectored vaccine expressing MERS-CoV spike protein, with further groups receiving control vaccinations. Infectious camels with active naturally acquired MERS-CoV infection, were co-housed with the vaccinated camels at a ratio of 1:2 (infected:vaccinated); nasal discharge and virus titres were monitored for 14 days. Overall, the vaccination reduced virus shedding and nasal discharge (p = 0.0059 and p = 0.0274, respectively). Antibody responses in seropositive camels were enhancedby the vaccine; these camels had a higher average age than seronegative. Older seronegative camels responded more strongly to vaccination than younger animals; and neutralising antibodies were detected in nasal swabs. Further work is required to optimise vaccine regimens for younger seronegative camels.


Subject(s)
Camelus , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Animals , Adenoviridae/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Camelus/immunology , Camelus/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Disease Outbreaks , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Middle East Respiratory Syndrome Coronavirus/physiology , Vaccination/methods , Viral Vaccines/immunology , Viral Vaccines/pharmacology , Zoonoses/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...