Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
2.
Immun Ageing ; 20(1): 5, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36698170

ABSTRACT

BACKGROUND: There is increasing concern that cancer and cancer treatment accelerate aging and the associated cognitive decline. We showed recently that treatment of 9-month-old male mice with cisplatin causes cognitive deficits that are associated with formation of tau deposits in the hippocampus. Here we explored the capacity of mesenchymal stem cells (MSC) given via the nose to prevent age-related brain tau deposits. Moreover, we more closely examined the cellular distribution of this hallmark of accelerated brain aging in response to treatment of 9-month-old female and male mice with cisplatin. RESULTS: We show that cisplatin induces tau deposits in the entorhinal cortex and hippocampus in both sexes. The tau deposits colocalize with syndecan-2. Astrocytes surrounding tau deposits have increased glial fibrillary acidic protein glial fibrillary acidic protein (GFAP) expression. Most of the cisplatin-induced tau deposits were located in microtubule associated protein-2 (MAP-2)+ neurons that were surrounded by aquaporin 4+ (AQP4)+ neuron-facing membrane domains of astrocytes. In addition, some tau deposits were detected in the perinuclear region of GFAP+ astrocytes and in CD31+ endothelial cells. There were no morphological signs of activation of ionized calcium binding adaptor molecule-1+ (Iba-1)+ microglia and no increases in brain cytokine production. Nasal administration of MSC at 48 and 96 hours after cisplatin prevented formation of tau deposits and normalized syndecan-2 and GFAP expression. Behaviorally, cisplatin-induced tau cluster formation was associated with reduced executive functioning and working/spatial memory and nasal administration of MSC at 48 and 96 hours after cisplatin prevented these cognitive deficits. Notably, delayed MSC administration (1 month after cisplatin) also prevented tau cluster formation and cognitive deficits, in both sexes. CONCLUSION: In summary, nasal administration of MSC to older mice at 2 days or 1 month after completion of cisplatin treatment prevents the accelerated development of tau deposits in entorhinal cortex and hippocampus and the associated cognitive deficits. Since MSC are already in clinical use for many other clinical indications, developing nasal MSC administration for treatment of accelerated brain aging and cognitive deficits in cancer survivors should be feasible and would greatly improve their quality of life.

3.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35260535

ABSTRACT

Understanding the endogenous mechanisms regulating resolution of pain may identify novel targets for treatment of chronic pain. Resolution of chemotherapy-induced peripheral neuropathy (CIPN) after treatment completion depends on CD8+ T cells and on IL-10 produced by other cells. Using Rag2-/- mice lacking T and B cells and adoptive transfer of Il13-/- CD8+ T cells, we showed that CD8+ T cells producing IL-13 were required for resolution of CIPN. Intrathecal administration of anti-IL-13 delayed resolution of CIPN and reduced IL-10 production by dorsal root ganglion macrophages. Depleting local CD206+ macrophages also delayed resolution of CIPN. In vitro, TIM3+CD8+ T cells cultured with cisplatin, apoptotic cells, or phosphatidylserine liposomes produced IL-13, which induced IL-10 in macrophages. In vivo, resolution of CIPN was delayed by intrathecal administration of anti-TIM3. Resolution was also delayed in Rag2-/- mice reconstituted with Havcr2 (TIM3)-/- CD8+ T cells. Our data indicated that cell damage induced by cisplatin activated TIM3 on CD8+ T cells, leading to increased IL-13 production, which in turn induced macrophage IL-10 production and resolution of CIPN. Development of exogenous activators of the IL-13/IL-10 pain resolution pathway may provide a way to treat the underlying cause of chronic pain.


Subject(s)
Chronic Pain , Neuralgia , Animals , CD8-Positive T-Lymphocytes/metabolism , Cisplatin , Hepatitis A Virus Cellular Receptor 2/metabolism , Hyperalgesia/chemically induced , Interleukin-10/metabolism , Interleukin-13/metabolism , Macrophages/metabolism , Mice , Neuralgia/complications
4.
Adv Healthc Mater ; 11(8): e2102153, 2022 04.
Article in English | MEDLINE | ID: mdl-35007407

ABSTRACT

Cognitive deficits (chemobrain) and peripheral neuropathy occur in ∼75% of patients treated for cancer with chemotherapy and persist long-term in >30% of survivors. Without preventive or curative interventions and with increasing survivorship rates, the population debilitated by these neurotoxicities is rising. Platinum-based chemotherapeutics, including cisplatin, induce neuronal mitochondrial defects leading to chemobrain and neuropathic pain. This study investigates the capacity of nasally administered mesenchymal stem cell-derived mitochondria coated with dextran-triphenylphosphonium polymer (coated mitochondria) to reverse these neurotoxicities. Nasally administered coated mitochondria are rapidly detectable in macrophages in the brain meninges but do not reach the brain parenchyma. The coated mitochondria change expression of >2400 genes regulating immune, neuronal, endocrine and vascular pathways in the meninges of mice treated with cisplatin. Nasal administration of coated mitochondria reverses cisplatin-induced cognitive deficits and resolves neuropathic pain at a >55-times lower dose compared to uncoated mitochondria. Reversal of these neuropathologies is associated with resolution of cisplatin-induced deficits in myelination, synaptosomal mitochondrial integrity and neurogenesis. These findings demonstrate that nasally administered coated mitochondria promote resolution of chemobrain and peripheral neuropathy, thereby identifying a novel facile strategy for clinical application of mitochondrial donation and treating central and peripheral nervous system pathologies by targeting the brain meninges.


Subject(s)
Antineoplastic Agents , Chemotherapy-Related Cognitive Impairment , Neuralgia , Animals , Antineoplastic Agents/metabolism , Cisplatin/pharmacology , Humans , Meninges/metabolism , Mice , Mitochondria
5.
Theranostics ; 11(7): 3109-3130, 2021.
Article in English | MEDLINE | ID: mdl-33537077

ABSTRACT

Up to seventy-five percent of patients treated for cancer suffer from cognitive deficits which can persist for months to decades, severely impairing quality of life. Although the number of cancer survivors is increasing tremendously, no efficacious interventions exist. Cisplatin, most commonly employed for solid tumors, leads to cognitive impairment including deficits in memory and executive functioning. We recently proposed deficient neuronal mitochondrial function as its underlying mechanism. We hypothesized nasal administration of mitochondria isolated from human mesenchymal stem cells to mice, can reverse cisplatin-induced cognitive deficits. Methods: Puzzle box, novel object place recognition and Y-maze tests were used to assess the cognitive function of mice. Immunofluorescence and high-resolution confocal microscopy were employed to trace the nasally delivered mitochondria and evaluate their effect on synaptic loss. Black Gold II immunostaining was used to determine myelin integrity. Transmission electron microscopy helped determine mitochondrial and membrane integrity of brain synaptosomes. RNA-sequencing was performed to analyse the hippocampal transcriptome. Results: Two nasal administrations of mitochondria isolated from human mesenchymal stem cells to mice, restored executive functioning, working and spatial memory. Confocal imaging revealed nasally delivered mitochondria rapidly arrived in the meninges where they were readily internalized by macrophages. The administered mitochondria also accessed the rostral migratory stream and various other brain regions including the hippocampus where they colocalized with GFAP+ cells. The restoration of cognitive function was associated with structural repair of myelin in the cingulate cortex and synaptic loss in the hippocampus. Nasal mitochondrial donation also reversed the underlying synaptosomal mitochondrial defects. Moreover, transcriptome analysis by RNA-sequencing showed reversal of cisplatin-induced changes in the expression of about seven hundred genes in the hippocampus. Pathway analysis identified Nrf2-mediated response as the top canonical pathway. Conclusion: Our results provide key evidence on the therapeutic potential of isolated mitochondria - restoring both brain structure and function, their capability to enter brain meninges and parenchyma upon nasal delivery and undergo rapid cellular internalization and alter the hippocampal transcriptome. Our data identify nasal administration of mitochondria as an effective strategy for reversing chemotherapy-induced cognitive deficits and restoring brain health, providing promise for the growing population of both adult and pediatric cancer survivors.


Subject(s)
Chemotherapy-Related Cognitive Impairment/therapy , Mitochondria/metabolism , Mitochondria/transplantation , Administration, Intranasal/methods , Animals , Brain/pathology , Chemotherapy-Related Cognitive Impairment/pathology , Cisplatin/adverse effects , Cisplatin/pharmacology , Cognition , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Hippocampus/pathology , Humans , Memory , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Neurons/pathology
6.
Adv Drug Deliv Rev ; 139: 92-115, 2019 01 15.
Article in English | MEDLINE | ID: mdl-29719210

ABSTRACT

Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively. Some of the advanced encapsulation systems provide active agents to the cells and enable a complete retrieval of the graft in the case of an adverse body reaction. Here, we review various encapsulation strategies developed in academic and industrial settings, including the state-of-the-art technologies in advanced preclinical phases as well as those undergoing clinical trials, and assess their advantages and challenges. We also emphasize the importance of stimulus-responsive encapsulated cell systems that provide a "smart and live" therapeutic delivery to overcome barriers in cell transplantation as well as their use in patients.


Subject(s)
Cell Transplantation , Diabetes Mellitus/therapy , Animals , Cell Encapsulation , Humans
7.
Biomaterials ; 177: 125-138, 2018 09.
Article in English | MEDLINE | ID: mdl-29886385

ABSTRACT

Autologous cell transplantation holds enormous promise to restore organ and tissue functions in the treatment of various pathologies including endocrine, cardiovascular, and neurological diseases among others. Even though immune rejection is circumvented with autologous transplantation, clinical adoption remains limited due to poor cell retention and survival. Cell transplant success requires homing to vascularized environment, cell engraftment and importantly, maintenance of inherent cell function. To address this need, we developed a three dimensional (3D) printed cell encapsulation device created with polylactic acid (PLA), termed neovascularized implantable cell homing and encapsulation (NICHE). In this paper, we present the development and systematic evaluation of the NICHE in vitro, and the in vivo validation with encapsulated testosterone-secreting Leydig cells in Rag1-/- castrated mice. Enhanced subcutaneous vascularization of NICHE via platelet-rich plasma (PRP) hydrogel coating and filling was demonstrated in vivo via a chorioallantoic membrane (CAM) assay as well as in mice. After establishment of a pre-vascularized bed within the NICHE, transcutaneously transplanted Leydig cells, maintained viability and robust testosterone secretion for the duration of the study. Immunohistochemical analysis revealed extensive Leydig cell colonization in the NICHE. Furthermore, transplanted cells achieved physiologic testosterone levels in castrated mice. The promising results provide a proof of concept for the NICHE as a viable platform technology for autologous cell transplantation for the treatment of a variety of diseases.


Subject(s)
Biocompatible Materials/chemistry , Leydig Cells/transplantation , Polyesters/chemistry , Tissue Scaffolds/chemistry , Animals , Cell Survival , Cells, Cultured , Cells, Immobilized/cytology , Cells, Immobilized/transplantation , Human Umbilical Vein Endothelial Cells , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Islets of Langerhans/cytology , Leydig Cells/cytology , Male , Mice , Neovascularization, Physiologic , Printing, Three-Dimensional , Tissue Engineering
8.
J Control Release ; 266: 238-247, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-28987879

ABSTRACT

Worldwide, tuberculosis (TB) remains one of the most prevalent infectious diseases causing morbidity and death in >1.5 million patients annually. Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, usually resides in the alveolar macrophages. Current tuberculosis treatment methods require more than six months, and low compliance often leads to therapeutic failure and multidrug resistant strain development. Critical to improving TB-therapy is shortening treatment duration and increasing therapeutic efficacy. In this study, we sought to determine if lung hemodynamics and pathological changes in Mtb infected cells can be used for the selective targeting of microparticles to infected tissue(s). Thioaptamers (TA) with CD44 (CD44TA) targeting moiety were conjugated to discoidal silicon mesoporous microparticles (SMP) to enhance accumulation of these agents/carriers in the infected macrophages in the lungs. In vitro, CD44TA-SMP accumulated in macrophages infected with mycobacteria efficiently killing the infected cells and decreasing survival of mycobacteria. In vivo, increased accumulations of CD44TA-SMP were recorded in the lung of M. tuberculosis infected mice as compared to controls. TA-targeted carriers significantly diminished bacterial load in the lungs and caused recruitment of T lymphocytes. Proposed mechanism of action of the designed vector accounts for a combination of increased uptake of particles that leads to infected macrophage death, as well as, activation of cellular immunity by the TA, causing increased T-cell accumulation in the treated lungs. Based on our data with CD44TA-SMP, we anticipate that this drug carrier can open new avenues in TB management.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Drug Carriers/administration & dosage , Hyaluronan Receptors/genetics , Mycobacterium tuberculosis , Tuberculosis/drug therapy , Animals , Cells, Cultured , Female , Humans , Hyaluronan Receptors/metabolism , Lung/immunology , Lung/metabolism , Macrophages/metabolism , Mice, Inbred BALB C , Silicon/administration & dosage , T-Lymphocytes/immunology , Tuberculosis/immunology , Tuberculosis/metabolism
9.
Nanomedicine ; 13(3): 829-833, 2017 04.
Article in English | MEDLINE | ID: mdl-28062373

ABSTRACT

The burgeoning application of nanotechnology to a variety of industries including cosmetics, food, medicine and materials has led to the exploration of nanotoxicology as a trending subject of research. However the role of a nanovector, in affecting the mutagenicity of its therapeutic payload has not yet been investigated. In this study, we compare the mutagenicity of the free drug - doxorubicin hydrochloride with its nanoencapsulated form - doxorubicin loaded liposome, using conventional methods required for regulatory approval. Contrary to free doxorubicin, doxorubicin encapsulated liposome expressed a significantly lower mutant frequency in the Ames assay, and was non-genotoxic in the in vitro micronucleus assay. Further investigation of the systems' cytotoxicity and their interaction with the bacterial cell envelope, suggests that the modification of the test parameters and release of the encapsulated drug prior to the Ames test show comparable mutagenic potential of the nanotherapeutic system to a free drug.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/toxicity , Doxorubicin/administration & dosage , Doxorubicin/toxicity , Mutagenicity Tests/methods , Animals , CHO Cells , Cricetulus , Liposomes , Microbial Viability/drug effects , Micronucleus Tests/methods , Salmonella typhimurium/cytology , Salmonella typhimurium/drug effects , Salmonella typhimurium/genetics
10.
Nanoscale ; 8(25): 12544-52, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-26818212

ABSTRACT

Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to impaired transport of both low- and high-molecular weight drugs into the lesions and to high washout rate. Nanoparticle albumin-bound-paclitaxel (nAb-PTX) has demonstrated benefits in clinical trials when compared to paclitaxel and docetaxel. However, its therapeutic efficacy for breast cancer liver metastasis is disappointing. As macrophages are the most abundant cells in the liver tumor microenvironment, we design a multistage system employing macrophages to deliver drugs into hypovascularized metastatic lesions, and perform in vitro, in vivo, and in silico evaluation. The system encapsulates nAb-PTX into nanoporous biocompatible and biodegradable multistage vectors (MSV), thus promoting nAb-PTX retention in macrophages. We develop a 3D in vitro model to simulate clinically observed hypo-perfused tumor lesions surrounded by macrophages. This model enables evaluation of nAb-PTX and MSV-nab PTX efficacy as a function of transport barriers. Addition of macrophages to this system significantly increases MSV-nAb-PTX efficacy, revealing the role of macrophages in drug transport. In the in vivo model, a significant increase in macrophage number, as compared to unaffected liver, is observed in mice, confirming the in vitro findings. Further, a mathematical model linking drug release and retention from macrophages is implemented to project MSV-nAb-PTX efficacy in a clinical setting. Based on macrophage presence detected via liver tumor imaging and biopsy, the proposed experimental/computational approach could enable prediction of MSV-nab PTX performance to treat metastatic cancer in the liver.


Subject(s)
Albumin-Bound Paclitaxel/administration & dosage , Liver Neoplasms/drug therapy , Macrophages/cytology , Nanoparticles , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Drug Liberation , Humans , Liver Neoplasms/secondary , Mice , Mice, Inbred BALB C , Tumor Microenvironment , Xenograft Model Antitumor Assays
11.
Cancer Res ; 76(2): 429-39, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26744528

ABSTRACT

Current treatments for liver metastases arising from primary breast and lung cancers are minimally effective. One reason for this unfavorable outcome is that liver metastases are poorly vascularized, limiting the ability to deliver therapeutics from the systemic circulation to lesions. Seeking to enhance transport of agents into the tumor microenvironment, we designed a system in which nanoparticle albumin-bound paclitaxel (nAb-PTX) is loaded into a nanoporous solid multistage nanovector (MSV) to enable the passage of the drug through the tumor vessel wall and enhance its interaction with liver macrophages. MSV enablement increased nAb-PTX efficacy and survival in mouse models of breast and lung liver metastasis. MSV-nAb-PTX also augmented the accumulation of paclitaxel and MSV in the liver, specifically in macrophages, whereas paclitaxel levels in the blood were unchanged after administering MSV-nAb-PTX or nAb-PTX. In vitro studies demonstrated that macrophages treated with MSV-nAb-PTX remained viable and were able to internalize, retain, and release significantly higher quantities of paclitaxel compared with treatment with nAb-PTX. The cytotoxic potency of the released paclitaxel was also confirmed in tumor cells cultured with the supernatants of macrophage treated with MSV-nAB-PTX. Collectively, our findings showed how redirecting nAb-PTX to liver macrophages within the tumor microenvironment can elicit a greater therapeutic response in patients with metastatic liver cancer, without increasing systemic side effects.


Subject(s)
Albumin-Bound Paclitaxel/metabolism , Liver Neoplasms/drug therapy , Liver/pathology , Animals , Cell Proliferation , Female , Humans , Macrophages/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles , Neoplasm Metastasis
12.
Adv Healthc Mater ; 4(17): 2657-2666, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26424126

ABSTRACT

Blood-borne objects display a nonspherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side effects. In this study, sphere- and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone) (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid five-bilayer (TA/PVPON) core shells, hollow elastic shells are unrecognized by J774A.1 macrophages, yet interact with endothelial and breast cancer cells. Internalization of cubical shells is fivefold more efficient by HMVEC (human microvascular endothelial cells) and sixfold and 2.5-fold more efficient by MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s(-1) (characteristic of tumor vasculature) and 100 s(-1) shear rate (normal vasculature) while it is decreased at 100 s(-1) shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment.


Subject(s)
Breast Neoplasms/drug therapy , Polymers/pharmacology , Biocompatible Materials/pharmacology , Cell Line, Tumor , Endothelial Cells/drug effects , Female , Humans , Hydrogen Bonding , Macrophages/drug effects , Polyvinyls/pharmacology , Pyrrolidines/pharmacology , Tannins/pharmacology , Tumor Microenvironment/drug effects
13.
Am J Obstet Gynecol ; 212(4): 508.e1-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25683966

ABSTRACT

OBJECTIVE: Indomethacin (IND) is a prostaglandin production inhibitor that reduces uterine contractions, but crosses the placenta leading to adverse fetal effects. Liposomes (LIP) are nanoscale systems clinically used to preferentially deliver a drug to the tissue of interest and simultaneously prevent distribution to unwanted locations. Our objective was to determine whether LIP could prevent the transfer of IND across the placenta to the fetus while preserving its pharmacological activity. STUDY DESIGN: Multilamellar LIP were designed with a 150- to 200-nm size, fluorescently labeled, and loaded with IND. Timed pregnant CD1 mice (n = 6/group) on gestational day 18 were administered LIP, LIP-IND (1 mg IND/kg), or saline (SAL) via tail vein injection, or IND (1 mg/kg) via oral gavage. After 4 hours, the uterus, placenta, and fetuses were retrieved. LIP levels were visualized using fluorescent microscopy and quantitatively assessed by National Institutes of Health image processing software. LIP brightness values (mean ± SEM) in arbitrary units (AU) were normalized to the autofluorescence of the same tissue (as measured in SAL group). IND and prostaglandin E2 levels were assessed using liquid chromatography-tandem mass spectrometry and enzyme-linked immunosorbent assay, respectively. RESULTS: The qualitative analysis of LIP distribution revealed that the system was primarily confined within the uterus, minimally detected within the placenta, and absent in the fetus. LIP fluorescence was greater in the uterus compared to placenta and fetus (uterus 15.3 ± 5.4 AU vs placenta 3.0 ± 3.5 AU vs fetus 4.4 ± 2.5 AU; P = .009). LIP-IND resulted in a 7.6-fold reduction in the IND levels in the fetus compared to IND alone (LIP-IND 10.7 ± 17.1 ng/g vs IND 81.3 ± 24.7 ng/g; P = .041). Prostaglandin E2 levels were significantly reduced in the uterus of animals given LIP-IND and IND compared to LIP and SAL. CONCLUSION: LIP localized within the uterus and did not cross the placenta to the fetus. IND within the fetus was reduced 7.6-fold while encapsulated within the LIP and the pharmacologic effects of IND were maintained. Thus, LIP provide a novel therapeutic approach to correct the primary clinical limitation of IND by reducing placental passage to the fetus.


Subject(s)
Indomethacin/administration & dosage , Tocolytic Agents/administration & dosage , Administration, Oral , Animals , Biomarkers/metabolism , Dinoprostone/metabolism , Female , Indomethacin/pharmacokinetics , Indomethacin/pharmacology , Injections, Intravenous , Liposomes , Maternal-Fetal Exchange , Mice , Pregnancy , Tocolytic Agents/pharmacokinetics , Tocolytic Agents/pharmacology , Uterus/drug effects , Uterus/metabolism
14.
ACS Nano ; 8(6): 5725-37, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24848786

ABSTRACT

We report on naturally inspired hydrogel capsules with pH-induced transitions from discoids to oblate ellipsoids and their interactions with cells. We integrate characteristics of erythrocytes such as discoidal shape, hollow structure, and elasticity with reversible pH-responsiveness of poly(methacrylic acid) (PMAA) to design a new type of drug delivery carrier to be potentially triggered by chemical stimuli in the tumor lesion. The capsules are fabricated from cross-linked PMAA multilayers using sacrificial discoid silicon templates. The degree of capsule shape transition is controlled by the pH-tuned volume change, which in turn is regulated by the capsule wall composition. The (PMAA)15 capsules undergo a dramatic 24-fold volume change, while a moderate 2.3-fold volume variation is observed for more rigid PMAA-(poly(N-vinylpyrrolidone) (PMAA-PVPON)5 capsules when solution pH is varied between 7.4 and 4. Despite that both types of capsules exhibit discoid-to-oblate ellipsoid transitions, a 3-fold greater swelling in radial dimensions is found for one-component systems due to a greater degree of the circular face bulging. We also show that (PMAA-PVPON)5 discoidal capsules interact differently with J774A.1 macrophages, HMVEC endothelial cells, and 4T1 breast cancer cells. The discoidal capsules show 60% lower internalization as compared to spherical capsules. Finally, hydrogel capsules demonstrate a 2-fold decrease in size upon internalization. These capsules represent a unique example of elastic hydrogel discoids capable of pH-induced drastic and reversible variations in aspect ratios. Considering the RBC-mimicking shape, their dimensions, and their capability to undergo pH-triggered intracellular responses, the hydrogel capsules demonstrate considerable potential as novel carriers in shape-regulated transport and cellular uptake.


Subject(s)
Erythrocytes/cytology , Fluorescent Dyes/chemistry , Hydrogels/chemistry , Polymethacrylic Acids/chemistry , Animals , Anisotropy , Cell Line, Tumor , Cross-Linking Reagents/chemistry , Drug Delivery Systems , Endocytosis , Endothelial Cells/cytology , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Macrophages/cytology , Macrophages/drug effects , Materials Testing , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Nanotechnology/methods , Polymers/chemistry , Silicon/chemistry , Spectroscopy, Fourier Transform Infrared
15.
Sci Rep ; 3: 1449, 2013.
Article in English | MEDLINE | ID: mdl-23618955

ABSTRACT

To investigate the transition from non-cancerous to metastatic from a physical sciences perspective, the Physical Sciences-Oncology Centers (PS-OC) Network performed molecular and biophysical comparative studies of the non-tumorigenic MCF-10A and metastatic MDA-MB-231 breast epithelial cell lines, commonly used as models of cancer metastasis. Experiments were performed in 20 laboratories from 12 PS-OCs. Each laboratory was supplied with identical aliquots and common reagents and culture protocols. Analyses of these measurements revealed dramatic differences in their mechanics, migration, adhesion, oxygen response, and proteomic profiles. Model-based multi-omics approaches identified key differences between these cells' regulatory networks involved in morphology and survival. These results provide a multifaceted description of cellular parameters of two widely used cell lines and demonstrate the value of the PS-OC Network approach for integration of diverse experimental observations to elucidate the phenotypes associated with cancer metastasis.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Models, Biological , Neoplasm Metastasis/pathology , Neoplasm Metastasis/physiopathology , Neoplasm Proteins/metabolism , Cell Line, Tumor , Cell Movement , Cell Size , Cell Survival , Computer Simulation , Humans
16.
Cancer Lett ; 334(2): 319-27, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23000514

ABSTRACT

Pancreatic cancer is a highly fatal disease characterized by a dominant stroma formation. Exploring new biological targets, specifically those overexpressed in stroma cells, holds significant potential for the design of specific nanocarriers to attain homing of therapeutic and imaging agents to the tumor. In clinical specimens of pancreatic cancer, we found increased expression of CD59 in tumor associated endothelial cells as well as infiltrating cells in the stroma as compared to uninvolved pancreas. We explored this dual targeting effect using orthotopic human pancreatic cancer in nude mice. By immunofluorescence analysis, we confirmed the increased expression of Ly6C, mouse homolog of CD59, in tumor associated endothelial cells as well as in macrophages within the stroma. We decorated the surface of porous silicon nanocarriers with Ly6C antibody. Targeted nanocarriers injected intravenously accumulated to tumor associated endothelial cells within 15min. At 4h after administration, 9.8±2.3% of injected dose/g tumor of the Ly6C targeting nanocarriers accumulated in the pancreatic tumors as opposed to 0.5±1.8% with non-targeted nanocarriers. These results suggest that Ly6C (or CD59) can serve as a novel dual target to deliver therapeutic agents to the stroma of pancreatic tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Endothelial Cells/metabolism , Macrophages/metabolism , Nanostructures/administration & dosage , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Silicon/administration & dosage , Animals , Antigens, Ly/biosynthesis , Antigens, Ly/metabolism , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , CD59 Antigens/biosynthesis , CD59 Antigens/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Delivery Systems/methods , Endothelial Cells/drug effects , Endothelial Cells/pathology , Female , Humans , Macrophages/drug effects , Macrophages/pathology , Male , Mice , Mice, Nude , Pancreatic Neoplasms/pathology , Silicon/pharmacokinetics
17.
J Mater Chem B ; 1(39)2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24409342

ABSTRACT

There has been extensive research on the use of nanovectors for cancer therapy. Targeted delivery of nanotherapeutics necessitates two important characteristics; the ability to accumulate at the disease locus after overcoming sequential biological barriers and the ability to carry a substantial therapeutic payload. Successful combination of the above two features is challenging, especially in solid porous materials where chemical conjugation of targeting entities on the particle surface will generally prevent successful loading of the therapeutic substance. In this study, we propose a novel strategy for decorating the surface of mesoporous silicon particles with targeting entities (bacteriophage) and gold nanoparticles (AuNP) while maintaining their payload carrying potential. The resulting Bacteriophage Associated Silicon Particles (BASP) demonstrates efficient encapsulation of macromolecules and therapeutic nanoparticles into the porous structures. In vitro targeting data show enhanced targeting efficiency with about four orders of magnitude lower concentration of bacteriophage. In vivo targeting data suggest that BASP maintain their integrity following intravenous administration in mice and display up to three fold higher accumulation in the tumor.

18.
Adv Funct Mater ; 22(20): 4225-4235, 2012 Oct 23.
Article in English | MEDLINE | ID: mdl-23227000

ABSTRACT

Porous silicon (pSi) is emerging as a promising material in the development of nanovectors for the systemic delivery of therapeutic and imaging agents. The integration of photolithographic patterning, typical of the semiconductor industry, with electrochemical silicon etching provides a highly flexible strategy to fabricate monodisperse and precisely tailored nanovectors. Here, a microfabrication strategy for direct lithographic patterning of discoidal pSi particles is presented that enables precise and independent control over particle size, shape, and porous structure. Discoidal pSi nanovectors with diameters ranging from 500 to 2600 nm, heights from 200 to 700 nm, pore sizes from 5 to 150 nm, and porosities from 40 to 90% are demonstrated. The degradation in serum, interaction with immune and endothelial cells in vitro, and biodistribution in mice bearing breast tumors are assessed for two discoidal nanovectors with sizes of 600 nm × 400 nm and 1000 nm × 400 nm. It is shown that both particle types are degraded after 24 h of continuous gentle agitation in serum, do not stimulate cytokine release from macrophages or affect endothelial cell viability, and accumulate up to about 10% of the injected dose per gram tissue in orthotopic murine models of breast cancer. The accumulation of the discoidal pSi nanovectors into the breast tumor mass is found to be up to five times higher than for spherical silica beads with similar diameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...