Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Mol Ther Methods Clin Dev ; 32(1): 101186, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38282894

ABSTRACT

The use of lentiviral vectors in cell and gene therapy is steadily increasing, both in commercial and investigational therapies. Although existing data increasingly support the usefulness and safety of clinical-grade lentiviral vectors used in cell manufacturing, comprehensive studies specifically addressing their long-term stability are currently lacking. This is significant considering the high cost of producing and testing GMP-grade vectors, the limited number of production facilities, and lengthy queue for production slots. Therefore, an extended shelf life is a critical attribute to justify the investment in large vector lots for investigational cell therapies. This study offers a thorough examination of essential stability attributes, including vector titer, transduction efficiency, and potency for a series of clinical-grade vector lots, each assessed at a minimum of 36 months following their date of manufacture. The 13 vector lots included in this study were used for cell product manufacturing in 16 different clinical trials, and at the time of the analysis had a maximum storage time at -80°C of up to 8 years. The results emphasize the long-term durability and efficacy of GMP-grade lentiviral vectors for use in ex vivo cell therapy manufacturing.

2.
Tuberculosis (Edinb) ; 142: 102377, 2023 09.
Article in English | MEDLINE | ID: mdl-37531864

ABSTRACT

The Many Hosts of Mycobacteria (MHM) meeting series brings together basic scientists, clinicians and veterinarians to promote robust discussion and dissemination of recent advances in our knowledge of numerous mycobacterial diseases, including human and bovine tuberculosis (TB), nontuberculous mycobacteria (NTM) infection, Hansen's disease (leprosy), Buruli ulcer and Johne's disease. The 9th MHM conference (MHM9) was held in July 2022 at The Ohio State University (OSU) and centered around the theme of "Confounders of Mycobacterial Disease." Confounders can and often do drive the transmission of mycobacterial diseases, as well as impact surveillance and treatment outcomes. Various confounders were presented and discussed at MHM9 including those that originate from the host (comorbidities and coinfections) as well as those arising from the environment (e.g., zoonotic exposures), economic inequality (e.g. healthcare disparities), stigma (a confounder of leprosy and TB for millennia), and historical neglect (a confounder in Native American Nations). This conference report summarizes select talks given at MHM9 highlighting recent research advances, as well as talks regarding the historic and ongoing impact of TB and other infectious diseases on Native American Nations, including those in Southwestern Alaska where the regional TB incidence rate is among the highest in the Western hemisphere.


Subject(s)
Coinfection , Mycobacterium Infections, Nontuberculous , Mycobacterium tuberculosis , Tuberculosis, Bovine , Animals , Cattle , Humans , Nontuberculous Mycobacteria , Mycobacterium Infections, Nontuberculous/microbiology
3.
J Food Prot ; 86(3): 100042, 2023 03.
Article in English | MEDLINE | ID: mdl-36916566

ABSTRACT

Campylobacter and pathogenic Escherichia coliillnesses have been attributed to the consumption of fresh produce. The leafy green, kale, is increasingly consumed raw. In comparison to other leafy greens, kale has a longer shelf-life. Due to the extended shelf-life of kale, it is warranted to examine the survival of pathogenic Campylobacter jejuni and E. coli O157:H7 inoculated on the surface of kale stored in a controlled environment at 4 ± 1.4°C, and average humidity of 95 ± 1.9% over a 23-day period. At predetermined time points (days 0, 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21), inoculated kale was destructively sampled and the surviving bacteria determined by serial dilution and plating onto Tryptic soy agar, Charcoal cefoperozone deoxycholate agar, and Eosin methylene blue for total aerobic bacteria, C. jejuni, and E. coli O157:H7, respectively. Enrichment and PCR were used for detection when pathogens were not detected using serial dilution and plating. Aerobic heterotrophic bacteria increased over the 23-day period, in contrast, significant declines in the inoculated pathogens were observed. Inoculated E. coli O157:H7 survived longer on kale (up to 19 d); in comparison, C. jejuni was undetectable by day 13 using enrichment and PCR or plating. In conclusion, C. jejuni and E. coli O157:H7 declined on fresh kale over time when held at refrigerated temperatures but were still detected during the majority of the time when the kale would likely still be considered edible by consumers.


Subject(s)
Brassica , Campylobacter jejuni , Escherichia coli O157 , Agar , Time Factors , Colony Count, Microbial , Food Microbiology , Temperature
4.
PLoS One ; 18(2): e0265054, 2023.
Article in English | MEDLINE | ID: mdl-36735747

ABSTRACT

Resource partitioning promotes coexistence among guild members, and carnivores reduce interference competition through behavioral mechanisms that promote spatio-temporal separation. We analyzed sympatric lion and spotted hyena movements and activity patterns to ascertain the mechanisms facilitating their coexistence within semi-arid and wetland ecosystems. We identified recurrent high-use (revisitation) and extended stay (duration) areas within home ranges, as well as correlated movement-derived measures of inter- and intraspecific interactions with environmental variables. Spatial overlaps among lions and hyenas expanded during the wet season, and occurred at edges of home ranges, around water-points, along pathways between patches of high-use areas. Lions shared more of their home ranges with spotted hyenas in arid ecosystems, but shared more of their ranges with conspecifics in mesic environments. Despite shared space use, we found evidence for subtle temporal differences in the nocturnal movement and activity patterns between the two predators, suggesting a fine localized-scale avoidance strategy. Revisitation frequency and duration within home ranges were influenced by interspecific interactions, after land cover categories and diel cycles. Intraspecific interactions were also important for lions and, important for hyenas were moon illumination and ungulates attracted to former anthrax carcass sites in Etosha, with distance to water in Chobe/Linyanti. Recursion and duration according to locales of competitor probabilities were similar among female lions and both sexes of hyenas, but different for male lions. Our results suggest that lions and spotted hyenas mediate the potential for interference competition through subtle differences in temporal activity, fine-scale habitat use differentiation, and localized reactive-avoidance behaviors. These findings enhance our understanding of the potential effects of interspecific interactions among large carnivore space-use patterns within an apex predator system and show adaptability across heterogeneous and homogeneous environments. Future conservation plans should emphasize the importance of inter- and intraspecific competition within large carnivore communities, particularly moderating such effects within increasingly fragmented landscapes.


Subject(s)
Carnivora , Hyaenidae , Lions , Stalking , Animals , Male , Female , Ecosystem
5.
Ecol Evol ; 11(14): 9227-9240, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306619

ABSTRACT

Disease transmission can be strongly influenced by the manner in which conspecifics are connected across a landscape and the effects of land use upon these dynamics. In northern Botswana, the territorial and group-living banded mongoose (Mungos mungo) lives across urban and natural landscapes and is infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi. Using microsatellite markers amplified from DNA derived from banded mongoose fecal and tissue samples (n = 168), we evaluated population genetic structure, individual dispersal, and gene flow for 12 troops. Genetic structure was detectable and moderately strong across groups (F ST = 0.086), with K = 7 being the best-supported number of genetic clusters. Indications of admixture in certain troops suggest formation of new groups through recent fusion events. Differentiation was higher for troops inhabiting natural areas (F ST = 0.102) than for troops in urban landscapes (F ST = 0.081). While this suggests increased levels of gene flow between urban-dwelling troops, the inclusion of a smaller number of study troops from natural land types may have influenced these findings. Of those individuals confirmed infected with M. mungi, the majority (73%, n = 11) were assigned to their natal group which is consistent with previous observations linking lower levels of dispersal with infection. Twenty-one probable dispersing individuals were identified, with all suspected migrants originating from troops within the urban landscape. Findings suggest that urbanized landscapes may increase gene flow and dispersal behavior with a concomitant increase in the risk of pathogen spread. As urban landscapes expand, there is an increasing need to understand how land use and pathogen infection may change wildlife behavior and disease transmission potential.

6.
Emerg Infect Dis ; 26(10): 2453-2456, 2020 10.
Article in English | MEDLINE | ID: mdl-32946735

ABSTRACT

We evaluated the prevalence of Rift Valley fever virus IgG and IgM in human serum samples (n = 1,276) collected in 2013-2014 in northern Botswana. Our findings provide evidence of active circulation of this virus in humans in the absence of clinical disease in this region.


Subject(s)
Aedes , Rift Valley Fever , Rift Valley fever virus , Animals , Antibodies, Viral , Botswana/epidemiology , Humans , Rift Valley Fever/epidemiology , Rift Valley fever virus/genetics
7.
Glob Chang Biol ; 26(8): 4284-4301, 2020 08.
Article in English | MEDLINE | ID: mdl-32558115

ABSTRACT

Infectious disease emergence has increased significantly over the last 30 years, with mass mortality events (MMEs) associated with epizootics becoming increasingly common. Factors influencing these events have been widely studied in terrestrial systems, but remain relatively unexplored in marine mammals. Infectious disease-induced MMEs (ID MMEs) have not been reported ubiquitously among marine mammal species, indicating that intrinsic (host) and/or extrinsic (environmental) ecological factors may influence this heterogeneity. We assess the occurrence of ID MMEs (1955-2018) across extant marine mammals (n = 129) in relation to key life-history characteristics (sociality, trophic level, habitat breadth) and environmental variables (season, sea surface temperature [SST] anomalies, El Niño occurrence). Our results show that ID MMEs have been reported in 14% of marine mammal species (95% CI 9%-21%), with 72% (n = 36; 95% CI 56%-84%) of these events caused predominantly by viruses, primarily morbillivirus and influenza A. Bacterial pathogens caused 25% (95% CI 14%-41%) of MMEs, with only one being the result of a protozoan pathogen. Overall, virus-induced MMEs involved a greater number of fatalities per event compared to other pathogens. No association was detected between the occurrence of ID MMEs and host characteristics, such as sociality or trophic level, but ID MMEs did occur more frequently in semiaquatic species (pinnipeds) compared to obligate ocean dwellers (cetaceans; χ2  = 9.6, p = .002). In contrast, extrinsic factors significantly influenced ID MMEs, with seasonality linked to frequency (χ2  = 19.85, p = .0002) and severity of these events, and global yearly SST anomalies positively correlated with their temporal occurrence (Z = 3.43, p = 2.7e-04). No significant association was identified between El Niño and ID MME occurrence (Z = 0.28, p = .81). With climate change forecasted to increase SSTs and the frequency of extreme seasonal weather events, epizootics causing MMEs are likely to intensify with significant consequences for marine mammal survival.


Subject(s)
Caniformia , Climate Change , Animals , Disease Outbreaks , Ecosystem , El Nino-Southern Oscillation , Mammals
8.
PLoS Negl Trop Dis ; 14(3): e0007888, 2020 03.
Article in English | MEDLINE | ID: mdl-32182238

ABSTRACT

BACKGROUND: Campylobacter is a common, but neglected foodborne-zoonotic pathogen, identified as a growing cause of foodborne disease worldwide. Wildlife and domestic animals are considered important reservoirs, but little is known about pathogen infection dynamics in free-ranging mammalian wildlife particularly in sub-Saharan Africa. In countries like Botswana, there is significant overlap between humans and wildlife, with the human population having one of the highest HIV infection rates in the world, increasing vulnerability to infection. METHODOLOGY/PRINCIPAL FINDINGS: We investigated Campylobacter occurrence in archived human fecal samples (children and adults, n = 122, 2011), feces from free-ranging banded mongooses (Mungos mungo, n = 201), surface water (n = 70), and river sediment samples (n = 81) collected in 2017 from the Chobe District, northern Botswana. Campylobacter spp. was widespread in humans (23.0%, 95% CI 13.9-35.4%), with infections dominantly associated with C. jejuni (82.1%, n = 28, 95% CI 55.1-94.5%). A small number of patients presented with asymptomatic infections (n = 6). While Campylobacter spp. was rare or absent in environmental samples, over half of sampled mongooses tested positive (56%, 95% CI 45.6-65.4%). Across the urban-wilderness continuum, we found significant differences in Campylobacter spp. detection associated with the type of den used by study mongooses. Mongooses utilizing man-made structures as den sites had significantly higher levels of C. jejuni infection (p = 0.019) than mongooses using natural dens. Conversely, mongooses using natural dens had overall higher levels of detection of Campylobacter at the genus level (p = 0.001). CONCLUSIONS: These results suggest that landscape features may have important influences on Campylobacter species exposure and transmission dynamics in wildlife. In particular, data suggest that human-modified landscapes may increase C. jejuni infection, a primarily human pathogen, in banded mongooses. Pathogen circulation and transmission in urbanizing wildlife reservoirs may increase human vulnerability to infection, findings that may have critical implications for both public and animal health in regions where people live in close proximity to wildlife.


Subject(s)
Campylobacter Infections/epidemiology , Campylobacter Infections/veterinary , Campylobacter jejuni/isolation & purification , Herpestidae/microbiology , Adolescent , Adult , Animals , Botswana/epidemiology , Campylobacter Infections/transmission , Child , Child, Preschool , Disease Transmission, Infectious , Feces/microbiology , Female , Humans , Infant , Male , Middle Aged , One Health , Rivers/microbiology , Young Adult
9.
BMC Ecol ; 20(1): 12, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32070331

ABSTRACT

BACKGROUND: Glucocorticoids mediate responses to perceived stressors, thereby restoring homeostasis. However, prolonged glucocorticoid elevation may cause homeostatic overload. Using extensive field investigations of banded mongoose (Mungos mungo) groups in northern Botswana, we assessed the influence of reproduction, predation risk, and food limitation on apparent homeostatic overload (n=13 groups, 1542 samples from 268 animals). We experimentally manipulated reproduction and regulated food supply in captive mongooses, and compared their glucocorticoid responses to those obtained from free-living groups. RESULTS: At the population level, variation in glucocorticoid levels in free-living mongooses was explained by food limitation: fecal organic matter, recent rainfall, and access to concentrated anthropogenic food resources. Soil macrofauna density and reproductive events explained less and predation risk very little variation in glucocorticoid levels. Reproduction and its associated challenges alone (under regulated feeding conditions) increased glucocorticoid levels 19-fold in a captive group. Among free-living groups, glucocorticoid elevation was seasonal (occurring in late dry season or early wet season when natural food resources were less available), but the timing of peak glucocorticoid production was moderated by access to anthropogenic resources (groups with fewer anthropogenic food sources had peaks earlier in dry seasons). Peak months represented 12- and 16-fold increases in glucocorticoids relative to nadir months with some animals exhibiting 100-fold increases. Relative to the captive group nadir, some free-living groups exhibited 60-fold increases in peak glucocorticoid levels with some animals exhibiting up to 800-fold increases. Most of these animals exhibited 1- to 10-fold increases relative to the captive animal peak. CONCLUSIONS: Banded mongooses exhibit seasonal chronic glucocorticoid elevation, associated primarily with food limitation and secondarily with reproduction. Magnitude and duration of this elevation suggests that this may be maladaptive for some animals, with possible fitness consequences. In late dry season, this population may face a convergence of stressors (food limitation, agonistic encounters at concentrated food resources, evictions, estrus, mate competition, parturition, and predation pressure on pups), which may induce homeostatic overload.


Subject(s)
Herpestidae , Animals , Feces , Female , Glucocorticoids , Reproduction , Seasons
10.
Epidemics ; 30: 100372, 2020 03.
Article in English | MEDLINE | ID: mdl-31551173

ABSTRACT

Diarrheal disease is the second largest cause of mortality in children younger than 5, yet our ability to anticipate and prepare for outbreaks remains limited. Here, we develop and test an epidemiological forecast model for childhood diarrheal disease in Chobe District, Botswana. Our prediction system uses a compartmental susceptible-infected-recovered-susceptible (SIRS) model coupled with Bayesian data assimilation to infer relevant epidemiological parameter values and generate retrospective forecasts. Our model inferred two system parameters and accurately simulated weekly observed diarrhea cases from 2007-2017. Accurate retrospective forecasts for diarrhea outbreaks were generated up to six weeks before the predicted peak of the outbreak, and accuracy increased over the progression of the outbreak. Many forecasts generated by our model system were more accurate than predictions made using only historical data trends. Accurate real-time forecasts have the potential to increase local preparedness for coming outbreaks through improved resource allocation and healthcare worker distribution.


Subject(s)
Diarrhea/epidemiology , Disease Outbreaks , Forecasting , Models, Biological , Bayes Theorem , Botswana/epidemiology , Child, Preschool , Diarrhea/immunology , Humans , Immunity , Infant , Retrospective Studies , Seasons
11.
Nat Commun ; 10(1): 5798, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31862873

ABSTRACT

Childhood diarrheal disease causes significant morbidity and mortality in low and middle-income countries, yet our ability to accurately predict diarrhea incidence remains limited. El Niño-Southern Oscillation (ENSO) has been shown to affect diarrhea dynamics in South America and Asia. However, understanding of its effects in sub-Saharan Africa, where the burden of under-5 diarrhea is high, remains inadequate. Here we investigate the connections between ENSO, local environmental conditions, and childhood diarrheal disease in Chobe District, Botswana. Our results demonstrate that La Niña conditions are associated with cooler temperatures, increased rainfall, and higher flooding in the Chobe region during the rainy season. In turn, La Niña conditions lagged 0-5 months are associated with higher than average incidence of under-5 diarrhea in the early rainy season. These findings demonstrate the potential use of ENSO as a long-lead prediction tool for childhood diarrhea in southern Africa.


Subject(s)
Diarrhea, Infantile/epidemiology , Disease Outbreaks/statistics & numerical data , El Nino-Southern Oscillation/adverse effects , Rotavirus Infections/epidemiology , Rotavirus Vaccines/administration & dosage , Rotavirus/immunology , Botswana/epidemiology , Child, Preschool , Cold Temperature/adverse effects , Diarrhea, Infantile/prevention & control , Diarrhea, Infantile/virology , Disease Outbreaks/prevention & control , Ecological Parameter Monitoring/statistics & numerical data , Humans , Incidence , Infant , Infant, Newborn , Rain , Rotavirus Infections/prevention & control , Rotavirus Infections/virology
12.
Nat Microbiol ; 4(8): 1337-1343, 2019 08.
Article in English | MEDLINE | ID: mdl-31086311

ABSTRACT

Bacillus anthracis is a spore-forming, Gram-positive bacterium responsible for anthrax, an acute infection that most significantly affects grazing livestock and wild ungulates, but also poses a threat to human health. The geographic extent of B. anthracis is poorly understood, despite multi-decade research on anthrax epizootic and epidemic dynamics; many countries have limited or inadequate surveillance systems, even within known endemic regions. Here, we compile a global occurrence dataset of human, livestock and wildlife anthrax outbreaks. With these records, we use boosted regression trees to produce a map of the global distribution of B. anthracis as a proxy for anthrax risk. We estimate that 1.83 billion people (95% credible interval (CI): 0.59-4.16 billion) live within regions of anthrax risk, but most of that population faces little occupational exposure. More informatively, a global total of 63.8 million poor livestock keepers (95% CI: 17.5-168.6 million) and 1.1 billion livestock (95% CI: 0.4-2.3 billion) live within vulnerable regions. Human and livestock vulnerability are both concentrated in rural rainfed systems throughout arid and temperate land across Eurasia, Africa and North America. We conclude by mapping where anthrax risk could disrupt sensitive conservation efforts for wild ungulates that coincide with anthrax-prone landscapes.


Subject(s)
Animal Diseases/epidemiology , Anthrax/epidemiology , Anthrax/veterinary , Bacillus anthracis/physiology , Animals , Animals, Wild/microbiology , Anthrax/microbiology , Disease Outbreaks , Environmental Microbiology , Geography , Humans , Livestock/microbiology , Models, Biological , Public Health , Risk Assessment , Risk Factors
13.
PLoS Med ; 15(11): e1002688, 2018 11.
Article in English | MEDLINE | ID: mdl-30408029

ABSTRACT

BACKGROUND: The impacts of climate change on surface water, waterborne disease, and human health remain a growing area of concern, particularly in Africa, where diarrheal disease is one of the most important health threats to children under 5 years of age. Little is known about the role of surface water and annual flood dynamics (flood pulse) on waterborne disease and human health nor about the expected impact of climate change on surface-water-dependent populations. METHODS AND FINDINGS: Using the Chobe River in northern Botswana, a flood pulse river-floodplain system, we applied multimodel inference approaches assessing the influence of river height, water quality (bimonthly counts of Escherichia coli and total suspended solids [TSS], 2011-2017), and meteorological variability on weekly diarrheal case reports among children under 5 presenting to health facilities (n = 10 health facilities, January 2007-June 2017). We assessed diarrheal cases by clinical characteristics and season across age groups using monthly outpatient data (January 1998-June 2017). A strong seasonal pattern was identified, with 2 outbreaks occurring regularly in the wet and dry seasons. The timing of outbreaks diverged from that at the level of the country, where surface water is largely absent. Across age groups, the number of diarrheal cases was greater, on average, during the dry season. Demographic and clinical characteristics varied by season, underscoring the importance of environmental drivers. In the wet season, rainfall (8-week lag) had a significant influence on under-5 diarrhea, with a 10-mm increase in rainfall associated with an estimated 6.5% rise in the number of cases. Rainfall, minimum temperature, and river height were predictive of E. coli concentration, and increases in E. coli in the river were positively associated with diarrheal cases. In the dry season, river height (1-week lag) and maximum temperature (1- and 4-week lag) were significantly associated with diarrheal cases. During this period, a 1-meter drop in river height corresponded to an estimated 16.7% and 16.1% increase in reported diarrhea with a 1- and 4-week lag, respectively. In this region, as floodwaters receded from the surrounding floodplains, TSS levels increased and were positively associated with diarrheal cases (0- and 3-week lag). Populations living in this region utilized improved water sources, suggesting that hydrological variability and rapid water quality shifts in surface waters may compromise water treatment processes. Limitations include the potential influence of health beliefs and health seeking behaviors on data obtained through passive surveillance. CONCLUSIONS: In flood pulse river-floodplain systems, hydrology and water quality dynamics can be highly variable, potentially impacting conventional water treatment facilities and the production of safe drinking water. In Southern Africa, climate change is predicted to intensify hydrological variability and the frequency of extreme weather events, amplifying the public health threat of waterborne disease in surface-water-dependent populations. Water sector development should be prioritized with urgency, incorporating technologies that are robust to local environmental conditions and expected climate-driven impacts. In populations with high HIV burdens, expansion of diarrheal disease surveillance and intervention strategies may also be needed. As annual flood pulse processes are predominantly influenced by climate controls in distant regions, country-level data may be inadequate to refine predictions of climate-health interactions in these systems.


Subject(s)
Climate Change , Diarrhea, Infantile/microbiology , Disease Outbreaks , Escherichia coli Infections/microbiology , Escherichia coli/pathogenicity , Floods , Rivers/microbiology , Water Microbiology , Water Quality , Water Supply , Weather , Age Factors , Botswana/epidemiology , Child, Preschool , Diarrhea, Infantile/diagnosis , Diarrhea, Infantile/epidemiology , Escherichia coli/isolation & purification , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology , Escherichia coli Infections/transmission , Female , Humans , Infant , Male , Public Health , Retrospective Studies , Risk Factors , Seasons
14.
Front Microbiol ; 9: 1894, 2018.
Article in English | MEDLINE | ID: mdl-30237787

ABSTRACT

Little is known about the role of surface water in the propagation of antibiotic resistance (AR), or the relationship between AR and water quality declines. While healthcare and agricultural sectors are considered the main contributors to AR dissemination, few studies have been conducted in their absence. Using linear models and Bayesian kriging, we evaluate AR among Escherichia coli water isolates collected bimonthly from the Chobe River in Northern Botswana (n = 1997, n = 414 water samples; July 2011-May 2012) in relation to water quality dynamics (E. coli, fecal coliform, and total suspended solids), land use, season, and AR in wildlife and humans within this system. No commercial agricultural or large medical facilities exist within this region. Here, we identify widespread AR in surface water, with land use and season significant predicators of AR levels. Mean AR was significantly higher in the wet season than the dry season (p = 0.003), and highest in the urban landscape (2.15, SD = 0.098) than the protected landscape (1.39, SD = 0.051). In-water E. coli concentrations were significantly positively associated with mean AR in the wet season (p < 0.001) but not in the dry season (p = 0.110), with TSS negatively associated with mean AR across seasons (p = 0.016 and p = 0.029), identifying temporal and spatial relationships between water quality variables and AR. Importantly, when human, water, and wildlife isolates were examined, similar AR profiles were identified (p < 0.001). Our results suggest that direct human inputs are sufficient for extensive dispersal of AR into the environment, with landscape features, season, and water quality variables influencing AR dynamics. Focused and expensive efforts to minimize pollution from agricultural sources, while important, may only provide incremental benefits to the management of AR across complex landscapes. Controlling direct human AR inputs into the environment remains a critical and pressing challenge.

15.
J Community Health ; 43(6): 1155-1160, 2018 12.
Article in English | MEDLINE | ID: mdl-29948524

ABSTRACT

Limited understanding of disease in low resource communities continues to hamper improvements in health. We evaluated household pit latrine sampling as a non-invasive approach to investigate important fecal pathogens such as Giardia lamblia and Cryptosporidium spp. in impoverished communities where health-seeking behavior limits the sensitivity of health facility-based surveillance. Fecal samples were collected from pit latrines in randomly selected households and from patients presenting to the only hospital in the region during the same time periods. Samples were tested with a commercially available ELISA. Giardia household prevalence was 28.7% in 2016 and 48.4% in 2017, while individual samples from hospital submission had a Giardia prevalence of 2.4% in 2016 and 8.0% in 2017. Cryptosporidium was only found in one household. Results suggest that pit latrine surveillance for fecal-borne infections provide course estimates of community infection levels that are unbiased by health seeking behaviors and allow surveillance of vulnerable sectors of a population.


Subject(s)
Feces/parasitology , Helminthiasis/parasitology , Sanitation/statistics & numerical data , Sewage/parasitology , Toilet Facilities/statistics & numerical data , Family Characteristics , Female , Humans , Male , Prevalence , Rural Population/statistics & numerical data , United States
16.
PLoS One ; 13(6): e0198277, 2018.
Article in English | MEDLINE | ID: mdl-29897948

ABSTRACT

Wildlife activity patterns tend to be defined by terms such as diurnal and nocturnal that might not fully depict the complexity of a species' life history strategy and behavior in a given system. These activity pattern categories often influence the methodological approaches employed, including the temporal period of study (daylight or nighttime). We evaluated banded mongoose (Mungos mungo) behavior in Northern Botswana through the use of remote sensing cameras at active den sites in order to characterize early morning behavior for this diurnal species. Our approach, however, provided the facility to capture unexpected nocturnal activity in a species that had otherwise only been studied during daylight hours. Camera traps were deployed for 215 trap days (24 hour data capture period) at den sites, capturing 5,472 photos over all events. Nocturnal activity was identified in 3% of trap days at study den sites with both vigilant and non-vigilant nocturnal behaviors identified. While vigilant behaviors involved troop fleeing responses, observations of non-vigilant behaviors suggest nonresident mongoose may investigate den sites of other troops during nocturnal time periods. There was no association between the occurrence of nocturnal activity and lunar phase (Fisher's exact test, n = 215, p = 0.638) and thus, increased moonlight was not identified as a factor influencing nocturnal behavior. The drivers and fitness consequences of these nocturnal activities remain uncertain and present intriguing areas for future research. Our findings highlight the need for ecological studies to more explicitly address and evaluate the potential for temporal variability in activity periods. Modifying our approach and embracing variation in wildlife activity patterns might provide new insights into the interaction between ecological phenomenon and species biology that spans the diurnal-nocturnal spectrum.


Subject(s)
Behavior, Animal/physiology , Herpestidae/physiology , Animals , Animals, Wild , Botswana , Circadian Rhythm , Moon , Remote Sensing Technology
17.
Mov Ecol ; 6: 5, 2018.
Article in English | MEDLINE | ID: mdl-29736242

ABSTRACT

Background: Variation in animal space use reflects fitness trade-offs associated with ecological constraints. Associated theories such as the metabolic theory of ecology and the resource dispersion hypothesis generate predictions about what drives variation in animal space use. But, metabolic theory is usually tested in macro-ecological studies and is seldom invoked explicitly in within-species studies. Full evaluation of the resource dispersion hypothesis requires testing in more species. Neither have been evaluated in the context of anthropogenic landscape change. Methods: In this study, we used data for banded mongooses (Mungos mungo) in northeastern Botswana, along a gradient of association with humans, to test for effects of space use drivers predicted by these theories. We used Bayesian parameter estimation and inference from linear models to test for seasonal differences in space use metrics and to model seasonal effects of space use drivers. Results: Results suggest that space use is strongly associated with variation in the level of overlap that mongoose groups have with humans. Seasonality influences this association, reversing seasonal space use predictions historically-accepted by ecologists. We found support for predictions of the metabolic theory when moderated by seasonality, by association with humans and by their interaction. Space use of mongooses living in association with humans was more concentrated in the dry season than the wet season, when historically-accepted ecological theory predicted more dispersed space use. Resource richness factors such as building density were associated with space use only during the dry season. We found negligible support for predictions of the resource dispersion hypothesis in general or for metabolic theory where seasonality and association with humans were not included. For mongooses living in association with humans, space use was not associated with patch dispersion or group size over both seasons. Conclusions: In our study, living in association with humans influenced space use patterns that diverged from historically-accepted predictions. There is growing need to explicitly incorporate human-animal interactions into ecological theory and research. Our results and methodology may contribute to understanding effects of anthropogenic landscape change on wildlife populations.

18.
Vet Pathol ; 55(2): 303-309, 2018 03.
Article in English | MEDLINE | ID: mdl-29258402

ABSTRACT

Wild banded mongooses ( Mungos mungo) in northeastern Botswana and northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex (MTC) pathogen, Mycobacterium mungi. We evaluated gross and histologic lesions in 62 infected mongooses (1999-2017). Many tissues contained multifocal irregular, lymphohistiocytic to granulomatous infiltrates and/or multifocal or coalescing noncaseating to caseating granulomas with variable numbers of intralesional acid-fast bacilli. Over one-third of nasal turbinates examined had submucosal lymphohistiocytic to granulomatous infiltrates, erosion and ulceration of the nasal mucosa, bony remodeling, and nasal distortion. Similar inflammatory cell infiltrates expanded the dermis of the nasal planum with frequent ulceration. However, even in cases with intact epidermis, acid-fast bacilli were present in variable numbers among dermal infiltrates and on the epidermal surface among desquamated cells and debris, most commonly in small crevices or folds. In general, tissue involvement varied among cases but was highest in lymph nodes (50/54, 93%), liver (39/53, 74%), spleen (37/51, 73%), and anal glands/sacs (6/8, 75%). Pulmonary lesions were present in 67% of sampled mongooses (35/52) but only in advanced disseminated disease. The pathological presentation of M. mungi in the banded mongoose is consistent with pathogen shedding occurring through scent-marking behaviors (urine and anal gland secretions) with new infections arising from contact with these contaminated olfactory secretions and percutaneous movement of the pathogen through breaks in the skin, nasal planum, and/or skin of the snout. Given the character and distribution of lesions and the presence of intracellular acid-fast bacilli, we hypothesize that pathogen spread occurs within the body through a hematogenous and/or lymphatic route. Features of prototypical granulomas such as multinucleated giant cells and peripheral fibrosis were rarely present in affected mongooses. Acid-fast bacilli were consistently found intracellularly, even in regions of necrosis. The mongoose genome has a unique deletion (RD1mon) that includes part of the encoding region for PPE68 (Rv3873), a gene co-operonic with PE35. These proteins can influence the host's cellular immune response to mycobacterial infections, and it remains uncertain how this deletion might contribute to observed patterns of pathology. M. mungi infection in banded mongooses is characterized by both a unique transmission and exposure route, as well as accompanying pathological features, providing an opportunity to increase our understanding of MTC pathogenesis across host-pathogen systems.


Subject(s)
Herpestidae/microbiology , Mycobacterium Infections/veterinary , Mycobacterium , Anal Sacs/pathology , Animals , Female , Liver/pathology , Lung/pathology , Lymph Nodes/pathology , Male , Mycobacterium Infections/microbiology , Mycobacterium Infections/pathology , Skin/pathology , Spleen/pathology
19.
Nat Ecol Evol ; 1(4): 90, 2017 Mar 23.
Article in English | MEDLINE | ID: mdl-28812651
20.
Ecol Evol ; 6(16): 5932-9, 2016 08.
Article in English | MEDLINE | ID: mdl-27547366

ABSTRACT

Urbanization and other human modifications of the landscape may indirectly affect disease dynamics by altering host behavior in ways that influence pathogen transmission. Few opportunities arise to investigate behaviorally mediated effects of human habitat modification in natural host-pathogen systems, but we provide a potential example of this phenomenon in banded mongooses (Mungos mungo), a social mammal. Our banded mongoose study population in Botswana is endemically infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi, that primarily invades the mongoose host through the nasal planum and breaks in the skin. In this system, several study troops have access to human garbage sites and other modified landscapes for foraging. Banded mongooses in our study site (N = 4 troops, ~130 individuals) had significantly higher within-troop aggression levels when foraging in garbage compared to other foraging habitats. Second, monthly rates of aggression were a significant predictor of monthly number of injuries in troops. Finally, injured individuals had a 75% incidence of clinical tuberculosis (TB) compared to a 0% incidence in visibly uninjured mongooses during the study period. Our data suggest that mongoose troops that forage in garbage may be at greater risk of acquiring TB by incurring injuries that may allow for pathogen invasion. Our study suggests the need to consider the indirect effects of garbage on behavior and wildlife health when developing waste management approaches in human-modified areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...