Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645208

ABSTRACT

Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ßßα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.

2.
Front Physiol ; 14: 1263420, 2023.
Article in English | MEDLINE | ID: mdl-38028797

ABSTRACT

Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-ß precursor protein (APP) or its cleavage product amyloid-ß (Aß), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aß, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.

3.
Biomol NMR Assign ; 17(2): 301-307, 2023 12.
Article in English | MEDLINE | ID: mdl-37861970

ABSTRACT

Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report 1H, 15N, and 13C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad a and d positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with ß-strand propensity- the ß-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4-6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.


Subject(s)
Kinesins , Microtubules , Rats , Animals , Kinesins/chemistry , Kinesins/metabolism , Amino Acid Sequence , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Microtubules/metabolism , Hydrogen
4.
J Struct Biol X ; 8: 100093, 2023 12.
Article in English | MEDLINE | ID: mdl-37655311

ABSTRACT

ZNF750 is a nuclear transcription factor that activates skin differentiation and has tumor suppressor roles in several cancers. Unusually, ZNF750 has only a single zinc-finger (ZNF) domain, Z*, with an amino acid sequence that differs markedly from the CCHH family consensus. Because of its sequence differences Z* is classified as degenerate, presumed to have lost the ability to bind the zinc ion required for folding. AlphaFold predicts an irregular structure for Z* with low confidence. Low confidence predictions are often inferred to be intrinsically disordered regions of proteins, which would be the case if Z* did not bind Zn2+. We use NMR and CD spectroscopy to show that a 25-51 segment of ZNF750 corresponding to the Z* domain folds into a well-defined antiparallel ßßα tertiary structure with a pM dissociation constant for Zn2+ and a thermal stability >80 °C. Of three alternative Zn2+ ligand sets, Z* uses a CCHC rather than the expected CCHH ligating motif. The switch in the last ligand maintains the folding topology and hydrophobic core of the classical ZNF motif. CCHC ZNFs are typically associated with protein-protein interactions, raising the possibility that ZNF750 interacts with DNA through other proteins rather than directly. The structure of Z* provides context for understanding the function of the domain and its cancer-associated mutations. We expect other ZNFs currently classified as degenerate could be CCHC-type structures like Z*.

5.
J Struct Biol ; : 108003, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37487847

ABSTRACT

This article was initially published in the Journal of Structural Biology, instead of the Journal of Structural Biology: X, due to a publisher error. We regret the inconvenience. The link to the article published in Journal of Structural Biology: X is presented below: https://www.sciencedirect.com/science/article/pii/S2590152423000090. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

6.
J Biomol NMR ; 77(3): 93-109, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37093339

ABSTRACT

NMR isotope shifts occur due to small differences in nuclear shielding when nearby atoms are different isotopes. For molecules dissolved in 1:1 H2O:D2O, the resulting mixture of N-H and N-D isotopes leads to a small splitting of resonances from adjacent nuclei. We used multidimensional NMR to measure isotope shifts for the proteins CUS-3iD and CspA. We observed four-bond 4∆N(ND) isotope shifts in high-resolution 2D 15N-TROSY experiments of the perdeuterated proteins that correlate with the torsional angle psi. Three-bond 3∆C'(ND) isotope shifts detected in H(N)CO spectra correlate with the intraresidue H-O distance, and to a lesser extent with the dihedral angle phi. The conformational dependence of the isotope shifts agree with those previously reported in the literature. Both the 4∆N(ND) and 3∆C'(ND) isotope shifts are sensitive to distances between the atoms giving rise to the isotope shifts and the atoms experiencing the splitting, however, these distances are strongly correlated with backbone dihedral angles making it difficult to resolve distance from stereochemical contributions to the isotope shift. H(NCA)CO spectra were used to measure two-bond 2∆C'(ND) isotope shifts and [D]/[H] fractionation factors. Neither parameter showed significant differences for hydrogen-bonded sites, or changes over a 25° temperature range, suggesting they are not sensitive to hydrogen bonding. Finally, the quartet that arises from the combination of 2∆C'(ND) and 3∆C'(ND) isotope shifts in H(CA)CO spectra was used to measure synchronized hydrogen exchange for the sequence neighbors A315-S316 in the protein CUS-3iD. In many of our experiments we observed minor resonances due to the 10% D2O used for the sample deuterium lock, indicating isotope shifts can be a source of spectral heterogeneity in standard NMR experiments. We suggest that applications of isotope shifts such as conformational analysis and correlated hydrogen exchange could benefit from the larger magnetic fields becoming available.


Subject(s)
Amides , Proteins , Amides/chemistry , Deuterium/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Hydrogen/chemistry , Protein Conformation , Hydrogen Bonding
7.
Elife ; 112022 08 01.
Article in English | MEDLINE | ID: mdl-35913044

ABSTRACT

Mitochondria play a central role in metabolic homeostasis, and dysfunction of this organelle underpins the etiology of many heritable and aging-related diseases. Tetrapeptides with alternating cationic and aromatic residues such as SS-31 (elamipretide) show promise as therapeutic compounds for mitochondrial disorders. In this study, we conducted a quantitative structure-activity analysis of three alternative tetrapeptide analogs, benchmarked against SS-31, that differ with respect to aromatic side chain composition and sequence register. We present the first structural models for this class of compounds, obtained with Nuclear Magnetic Resonance (NMR) and molecular dynamics approaches, showing that all analogs except for SS-31 form compact reverse turn conformations in the membrane-bound state. All peptide analogs bound cardiolipin-containing membranes, yet they had significant differences in equilibrium binding behavior and membrane interactions. Notably, analogs had markedly different effects on membrane surface charge, supporting a mechanism in which modulation of membrane electrostatics is a key feature of their mechanism of action. The peptides had no strict requirement for side chain composition or sequence register to permeate cells and target mitochondria in mammalian cell culture assays. All four peptides were pharmacologically active in serum withdrawal cell stress models yet showed significant differences in their abilities to restore mitochondrial membrane potential, preserve ATP content, and promote cell survival. Within our peptide set, the analog containing tryptophan side chains, SPN10, had the strongest impact on most membrane properties and showed greatest efficacy in cell culture studies. Taken together, these results show that side chain composition and register influence the activity of these mitochondria-targeted peptides, helping provide a framework for the rational design of next-generation therapeutics with enhanced potency.


Subject(s)
Mitochondria , Mitochondrial Diseases , Animals , Cardiolipins/metabolism , Humans , Mammals/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Peptides/metabolism , Structure-Activity Relationship
8.
Protein Sci ; 31(5): e4321, 2022 05.
Article in English | MEDLINE | ID: mdl-35481638

ABSTRACT

Hydrodynamic radii (Rh -values) calculated from diffusion coefficients measured by pulse-field-gradient nuclear magnetic resonance are compared for folded and unfolded proteins. For native globular proteins, the Rh -values increase as a power of 0.35 with molecular size, close to the scaling factor of 0.33 predicted from polymer theory. Unfolded proteins were studied under four sets of conditions: in the absence of denaturants, in the presence of 6 M urea, in 95% dimethyl sulfoxide (DMSO), and in 40% hexafluoroisopropanol (HFIP). Scaling factors under all four unfolding conditions are similar (0.49-0.53) approaching the theoretical value of 0.60 for a fully unfolded random coil. Persistence lengths are also similar, except smaller in 95% DMSO, suggesting that the polypeptides are more disordered on a local scale with this solvent. Three of the proteins in our unfolded set have an asymmetric sequence-distribution of charged residues. While these proteins behave normally in water and 6 M urea, they give atypically low Rh -values in 40% HFIP and 95% DMSO suggesting they are forming electrostatic hairpins, favored by their asymmetric sequence charge distribution and the low dielectric constants of DMSO and HFIP. While diffusion-ordered NMR spectroscopy can separate small molecules, we show a number of factors combine to make protein-sized molecules much more difficult to resolve in mixtures. Finally, we look at the temperature dependence of apparent diffusion coefficients. Small molecules show a linear temperature response, while large proteins show abnormally large apparent diffusion coefficients at high temperatures due to convection, suggesting diffusion reference standards are only useful near 25°C.


Subject(s)
Dimethyl Sulfoxide , Protein Biosynthesis , Diffusion , Magnetic Resonance Spectroscopy , Proteins , Urea
9.
Protein Sci ; 30(5): 990-1005, 2021 05.
Article in English | MEDLINE | ID: mdl-33733504

ABSTRACT

The C-terminal domain of Bacillus cereus hemolysin II (HlyIIC), stabilizes the trans-membrane-pore formed by the HlyII toxin and may aid in target cell recognition. Initial efforts to determine the NMR structure of HlyIIC were hampered by cis/trans isomerization about the single proline at position 405 that leads to doubling of NMR resonances. We used the mutant P405M-HlyIIC that eliminates the cis proline to determine the NMR structure of the domain, which revealed a novel fold. Here, we extend earlier studies to the NMR structure determination of the cis and trans states of WT-HlyIIC that exist simultaneously in solution. The primary structural differences between the cis and trans states are in the loop that contains P405, and structurally adjacent loops. Thermodynamic linkage analysis shows that at 25 C the cis proline, which already has a large fraction of 20% in the unfolded protein, increases to 50% in the folded state due to coupling with the global stability of the domain. The P405M or P405A substitutions eliminate heterogeneity due to proline isomerization but lead to the formation of a new dimeric species. The NMR structure of the dimer shows that it is formed through domain-swapping of strand ß5, the last segment of secondary structure following P405. The presence of P405 in WT-HlyIIC strongly disfavors the dimer compared to the P405M-HlyIIC or P405A-HlyIIC mutants. The WT proline may thus act as a "gatekeeper," warding off aggregative misfolding.


Subject(s)
Bacillus cereus/chemistry , Bacterial Proteins/chemistry , Hemolysin Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Substitution , Bacillus cereus/genetics , Bacterial Proteins/genetics , Hemolysin Proteins/genetics , Mutation, Missense , Protein Domains
10.
Viruses ; 12(10)2020 10 14.
Article in English | MEDLINE | ID: mdl-33066635

ABSTRACT

Decoration proteins are viral accessory gene products that adorn the surfaces of some phages and viral capsids, particularly tailed dsDNA phages. These proteins often play a "cementing" role, reinforcing capsids against accumulating internal pressure due to genome packaging, or environmental insults such as extremes of temperature or pH. Many decoration proteins serve alternative functions, including target cell recognition, participation in viral assembly, capsid size determination, or modulation of host gene expression. Examples that currently have structures characterized to high-resolution fall into five main folding motifs: ß-tulip, ß-tadpole, OB-fold, Ig-like, and a rare knotted α-helical fold. Most of these folding motifs have structure homologs in virus and target cell proteins, suggesting horizontal gene transfer was important in their evolution. Oligomerization states of decoration proteins range from monomers to trimers, with the latter most typical. Decoration proteins bind to a variety of loci on capsids that include icosahedral 2-, 3-, and 5-fold symmetry axes, as well as pseudo-symmetry sites. These binding sites often correspond to "weak points" on the capsid lattice. Because of their unique abilities to bind virus surfaces noncovalently, decoration proteins are increasingly exploited for technology, with uses including phage display, viral functionalization, vaccination, and improved nanoparticle design for imaging and drug delivery. These applications will undoubtedly benefit from further advances in our understanding of these versatile augmenters of viral functions.


Subject(s)
DNA Viruses/genetics , Viral Proteins/chemistry , Viral Proteins/genetics , Animals , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , DNA Packaging , DNA, Viral , Gene Transfer, Horizontal , Host-Pathogen Interactions , Mice , Models, Molecular , Protein Folding , Structure-Activity Relationship , Virion , Virus Assembly
11.
Biophys J ; 117(8): 1387-1392, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31585705

ABSTRACT

Scaffolding proteins (SPs) are required for the capsid shell assembly of many tailed double-stranded DNA bacteriophages, some archaeal viruses, herpesviruses, and adenoviruses. Despite their importance, only one high-resolution structure is available for SPs within procapsids. Here, we use the inherent size limit of NMR to identify mobile segments of the 303-residue phage P22 SP free in solution and when incorporated into a ∼23 MDa procapsid complex. Free SP gives NMR signals from its acidic N-terminus (residues 1-40) and basic C-terminus (residues 264-303), whereas NMR signals from the middle segment (residues 41-263) are missing because of intermediate conformational exchange on the NMR chemical shift timescale. When SP is incorporated into P22 procapsids, NMR signals from the C-terminal helix-turn-helix domain disappear because of binding to the procapsid interior. Signals from the N-terminal domain persist, indicating that this segment retains flexibility when bound to procapsids. The unstructured character of the N-terminus, coupled with its high content of negative charges, is likely important for dissociation and release of SP during the double-stranded DNA genome packaging step accompanying phage maturation.


Subject(s)
Bacteriophage P22/chemistry , Capsid/chemistry , Protein Folding , Viral Structural Proteins/chemistry , Bacteriophage P22/metabolism , Capsid/metabolism , Intrinsically Disordered Proteins/chemistry , Magnetic Resonance Spectroscopy/methods , Protein Binding , Protein Domains , Viral Structural Proteins/metabolism
12.
Elife ; 82019 04 04.
Article in English | MEDLINE | ID: mdl-30945633

ABSTRACT

The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.


Subject(s)
Capsid Proteins/chemistry , Capsid Proteins/metabolism , Capsid/metabolism , Caudovirales/physiology , Virus Assembly , Capsid/ultrastructure , Caudovirales/ultrastructure , Cryoelectron Microscopy , DNA, Viral/metabolism , Imaging, Three-Dimensional , Magnetic Resonance Spectroscopy , Protein Binding , Protein Multimerization
13.
J Virol ; 93(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30787158

ABSTRACT

Despite very low sequence homology, the major capsid proteins of double-stranded DNA (dsDNA) bacteriophages, some archaeal viruses, and the herpesviruses share a structural motif, the HK97 fold. Bacteriophage P22, a paradigm for this class of viruses, belongs to a phage gene cluster that contains three homology groups: P22-like, CUS-3-like, and Sf6-like. The coat protein of each phage has an inserted domain (I-domain) that is more conserved than the rest of the coat protein. In P22, loops in the I-domain are critical for stabilizing intra- and intersubunit contacts that guide proper capsid assembly. The nuclear magnetic resonance (NMR) structures of the P22, CUS-3, and Sf6 I-domains reveal that they are all six-stranded, anti-parallel ß-barrels. Nevertheless, significant structural differences occur in loops connecting the ß-strands, in surface electrostatics used to dock the I-domains with their respective coat protein core partners, and in sequence motifs displayed on the capsid surfaces. Our data highlight the structural diversity of I-domains that could lead to variations in capsid assembly mechanisms and capsid surfaces adapted for specific phage functions.IMPORTANCE Comparative studies of protein structures often provide insights into their evolution. The HK97 fold is a structural motif used to form the coat protein shells that encapsidate the genomes of many dsDNA phages and viruses. The structure and function of coat proteins based on the HK97 fold are often embellished by the incorporation of I-domains. In the present work we compare I-domains from three phages representative of highly divergent P22-like homology groups. While the three I-domains share a six-stranded ß-barrel skeleton, there are differences (i) in structure elements at the periphery of the conserved fold, (ii) in the locations of disordered loops important in capsid assembly and conformational transitions, (iii) in surfaces charges, and (iv) in sequence motifs that are potential ligand-binding sites. These structural modifications on the rudimentary I-domain fold suggest that considerable structural adaptability was needed to fulfill the versatile range of functional requirements for distinct phages.


Subject(s)
Bacteriophage P22/chemistry , Capsid/chemistry , Protein Folding , Viral Envelope Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Protein Structure, Secondary
14.
Biomol NMR Assign ; 12(2): 339-343, 2018 10.
Article in English | MEDLINE | ID: mdl-30109462

ABSTRACT

Phage L encodes a trimeric 43 kDa decoration protein (Dec) that noncovalently binds and stabilizes the capsids of the homologous phages L and P22 in vitro. At physiological pH Dec was unsuitable for NMR. We were able to obtain samples amenable for NMR spectroscopy by unfolding Dec to pH 2 and refolding it to pH 4. Our unfolding/refolding protocol converted trimeric Dec to a folded 14.4 kDa monomer. We verified that the acid-unfolding protocol did not perturb the secondary structure, or the capsid-binding function of refolded Dec. We were able to obtain complete 1H, 15N, and 13C assignments for the Dec monomer, as well as information on its secondary structure and dynamics based on chemical shift assignments. The assigned NMR spectrum is being used to determine the three-dimensional structure of Dec, which is important for understanding how the trimer binds phage capsids and for the use of the protein as a platform for phage-display nanotechnology.


Subject(s)
Bacteriophage lambda , Nuclear Magnetic Resonance, Biomolecular , Viral Proteins/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration
15.
Biochim Biophys Acta Biomembr ; 1860(9): 1765-1782, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29518374

ABSTRACT

Islet amyloid polypeptide (a.k.a. IAPP, amylin) is a 37 amino acid hormone that has long been associated with the progression of type II diabetes mellitus (TIIDM) disease. The endocrine peptide hormone aggregatively misfolds to form amyloid deposits in and around the pancreatic islet ß-cells that synthesize both insulin and IAPP, leading to a decrease in ß-cell mass in patients with the disease. Extracellular IAPP amyloids induce ß-cell death through the formation of reactive oxygen species, mitochondrial dysfunction, chromatin condensation, and apoptotic mechanisms, although the precise roles of IAPP in TIIDM are yet to be established. Here we review aspects of the normal physiological function of IAPP in glucose regulation together with insulin, and its misfolding which contributes to TIIDM, and may also play roles in other pathologies such as Alzheimer's and heart disease. We summarize information on expression of the IAPP gene, the regulation of the hormone by post-translational modifications, the structural properties of the peptide in various states, the kinetics of misfolding to amyloid fibrils, and the interactions of the peptide with insulin, membranes, glycosaminoglycans, and nanoparticles. Finally, we describe how basic research is starting to have a positive impact on the development of approaches to circumvent IAPP amyloidogenesis. These include therapeutic strategies aimed at stabilizing non-amyloidogenic states, inhibition of amyloid growth or disruption of amyloid fibrils, antibodies directed towards amyloid structures, and inhibition of interactions with cofactors that facilitate aggregation or stabilize amyloids.

16.
Sci Rep ; 7(1): 3277, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607368

ABSTRACT

In addition to multiple virulence factors, Bacillus cereus a pathogen that causes food poisoning and life-threatening wound infections, secretes the pore-forming toxin hemolysin II (HlyII). The HlyII toxin has a unique 94 amino acid C-terminal domain (HlyIIC). HlyIIC exhibits splitting of NMR resonances due to cis/trans isomerization of a single proline near the C-terminus. To overcome heterogeneity, we solved the structure of P405M-HlyIIC, a mutant that exclusively stabilizes the trans state. The NMR structure of HlyIIC reveals a novel fold, consisting of two subdomains αA-ß1-ß2 and ß3-ß4-αB-ß5, that come together in a barrel-like structure. The barrel core is fastened by three layers of hydrophobic residues. The barrel end opposite the HlyIIC-core has a positively charged surface, that by binding negatively charged moieties on cellular membranes, may play a role in target-cell surface recognition or stabilization of the heptameric pore complex. In the WT domain, dynamic flexibility occurs at the N-terminus and the first α-helix that connects the HlyIIC domain to the HlyII-core structure. In the destabilizing P405M mutant, increased flexibility is evident throughout the first subdomain, suggesting that the HlyIIC structure may have arisen through gene fusion.


Subject(s)
Bacillus cereus/metabolism , Bacterial Proteins/chemistry , Hemolysin Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Folding , Bacillus cereus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hydrogen/chemistry , Hydrophobic and Hydrophilic Interactions , Isomerism , Models, Molecular , Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Static Electricity
17.
Biochemistry ; 56(11): 1604-1619, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28230348

ABSTRACT

To understand the roles ion pairs play in stabilizing coiled coils, we determined nuclear magnetic resonance structures of GCN4p at three pH values. At pH 6.6, all acidic residues are fully charged; at pH 4.4, they are half-charged, and at pH 1.5, they are protonated and uncharged. The α-helix monomer and coiled coil structures of GCN4p are largely conserved, except for a loosening of the coiled coil quaternary structure with a decrease in pH. Differences going from neutral to acidic pH include (i) an unwinding of the coiled coil superhelix caused by the loss of interchain ion pair contacts, (ii) a small increase in the separation of the monomers in the dimer, (iii) a loosening of the knobs-into-holes packing motifs, and (iv) an increased separation between oppositely charged residues that participate in ion pairs at neutral pH. Chemical shifts (HN, N, C', Cα, and Cß) of GCN4p display a seven-residue periodicity that is consistent with α-helical structure and is invariant with pH. By contrast, periodicity in hydrogen exchange rates at neutral pH is lost at acidic pH as the exchange mechanism moves into the EX1 regime. On the basis of 1H-15N nuclear Overhauser effect relaxation measurements, the α-helix monomers experience only small increases in picosecond to nanosecond backbone dynamics at acidic pH. By contrast, 13C rotating frame T1 relaxation (T1ρ) data evince an increase in picosecond to nanosecond side-chain dynamics at lower pH, particularly for residues that stabilize the coiled coil dimerization interface through ion pairs. The results on the structure and dynamics of GCNp4 over a range of pH values help rationalize why a single structure at neutral pH poorly predicts the pH dependence of the unfolding stability of the coiled coil.


Subject(s)
Basic-Leucine Zipper Transcription Factors/chemistry , Molecular Dynamics Simulation , Phosphoproteins/chemistry , Protons , Recombinant Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Folding , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Static Electricity , Thermodynamics
18.
Biomol NMR Assign ; 11(1): 35-38, 2017 04.
Article in English | MEDLINE | ID: mdl-27798771

ABSTRACT

The P22 bacteriophage group is a subgroup of the λ phage supercluster, comprised of the three major sequence types Sf6, P22, and CUS-3, based on their capsid proteins. Our goal is to investigate the extent to which structure-function relationships are conserved for the viral coat proteins and I-domains in this subgroup. Sf6 is a phage that infects the human pathogen Shigella flexneri. The coat protein of Sf6 assembles into a procapsid, which further undergoes maturation during DNA packaging into an infectious virion. The Sf6 coat protein contains a genetically inserted domain, termed the I-domain, similar to the ones present in the P22 and CUS-3 coat proteins. Based on the P22 example, I-domains play important functional roles in capsid assembly, stability, viability, and size-determination. Here we report the 1H, 15N, and 13C chemical shift assignments for the I-domain of the Sf6 phage coat protein. Chemical shift-based secondary structure prediction and hydrogen-bond patterns from a long-range HNCO experiment indicate that the Sf6 I-domain adopts a 6-stranded ß-barrel fold like those of P22 and CUS-3 but with important differences, including the absence of the D-loop that is critical for capsid assembly and the addition of a novel disordered loop region.


Subject(s)
Bacteriophage P22/physiology , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Protein Domains
19.
J Biol Chem ; 291(21): 11359-72, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27006399

ABSTRACT

The I-domain is a genetic insertion in the phage P22 coat protein that chaperones its folding and stability. Of 11 acidic residues in the I-domain, seven participate in stabilizing electrostatic interactions with basic residues across elements of secondary structure, fastening the ß-barrel fold. A hydrogen-bonded salt bridge between Asp-302 and His-305 is particularly interesting as Asp-302 is the site of a temperature-sensitive-folding mutation. The pKa of His-305 is raised to 9.0, indicating the salt bridge stabilizes the I-domain by ∼4 kcal/mol. Consistently, urea denaturation experiments indicate the stability of the WT I-domain decreases by 4 kcal/mol between neutral and basic pH. The mutants D302A and H305A remove the pH dependence of stability. The D302A substitution destabilizes the I-domain by 4 kcal/mol, whereas H305A had smaller effects, on the order of 1-2 kcal/mol. The destabilizing effects of D302A are perpetuated in the full-length coat protein as shown by a higher sensitivity to protease digestion, decreased procapsid assembly rates, and impaired phage production in vivo By contrast, the mutants have only minor effects on capsid expansion or stability in vitro The effects of the Asp-302-His-305 salt bridge are thus complex and context-dependent. Substitutions that abolish the salt bridge destabilize coat protein monomers and impair capsid self-assembly, but once capsids are formed the effects of the substitutions are overcome by new quaternary interactions between subunits.


Subject(s)
Bacteriophage P22/metabolism , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Amino Acid Substitution , Bacteriophage P22/genetics , Capsid Proteins/genetics , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis, Site-Directed , Protein Domains , Protein Folding , Protein Multimerization , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium Chloride/metabolism , Thermodynamics
20.
Methods Mol Biol ; 1345: 211-22, 2016.
Article in English | MEDLINE | ID: mdl-26453215

ABSTRACT

Amyloid fibrils are associated with a number of human diseases. These aggregatively misfolded intermolecular ß-sheet assemblies constitute some of the most challenging targets in structural biology because to their complexity, size, and insolubility. Here, protocols and controls are described for experiments designed to study hydrogen-bonding in amyloid fibrils indirectly, by transferring information about amide proton occupancy in the fibrils to the dimethyl sulfoxide-denatured state. Since the denatured state is amenable to solution NMR spectroscopy, the method can provide residue-level-resolution data on hydrogen exchange for the monomers that make up the fibrils.


Subject(s)
Amyloid/chemistry , Hydrogen/chemistry , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Amyloid/metabolism , Deuterium/chemistry , Humans , Hydrogen Bonding , Protein Folding
SELECTION OF CITATIONS
SEARCH DETAIL
...