Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 48(4): 1461-1468, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33294990

ABSTRACT

PURPOSE: For stereotactic radiosurgery (SRS), accurate evaluation of dose-volume metrics for small structures is necessary. The purpose of this study was to compare the DVH metric capabilities of five commercially available SRS DVH analysis tools (Eclipse, Elements, Raystation, MIM, and Velocity). METHODS: DICOM RTdose and RTstructure set files created using MATLAB were imported and evaluated in each of the tools. Each structure set consisted of 50 randomly placed spherical targets. The dose distributions were created on a 1-mm grid using an analytic model such that the dose-volume metrics of the spheres were known. Structure sets were created for 3, 5, 7, 10, 15, and 20 mm diameter spheres. The reported structure volume, V100% [cc], and V50% [cc], and the RTOG conformity index and Paddick Gradient Index, were compared with the analytical values. RESULTS: The average difference and range across all evaluated target sizes for the reported structure volume was - 4.73%[-33.2,0.2], 0.11%[-10.9, 9.5], -0.39%[-12.1, 7.0], -2.24%[-21.0, 1.3], and 1.15%[-15.1,0.8], for TPS-A through TPS-E, respectively. The average difference and range for the V100%[cc] (V20Gy[cc]) was - 0.4[-24.5,9.8], -2.73[-23.6, 1.1], -3.01[-23.6, 0.6], -3.79[-27.3, 1.3], and 0.26[-6.1,2.6] for TPS-A through TPS-E, respectively. For V50%[cc](V10Gy[cc]) in TPS-A through TPS-E the average and ranger were - 0.05[-0.8,0.4], -0.18[-1.2, 0.5], -0.44[-1.4, 0.3], -0.26[-1.8, 2.6], and 0.09[-1.4,2.7]. CONCLUSION: This study expanded on the previously published literature to quantitatively compare the DVH analysis capabilities of software commonly used for SRS plan evaluation and provides freely available and downloadable analytically derived set of ground truth DICOM dose and structure files for the use of radiotherapy clinics. The differences between systems highlight the need for standardization and/or transparency between systems, especially when evaluating plan quality for multi-institutional clinical trials.


Subject(s)
Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Software
2.
J Appl Clin Med Phys ; 21(10): 40-47, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32779832

ABSTRACT

PURPOSE: To create an open-source visualization program that allows one to find potential cone collisions while planning intracranial stereotactic radiosurgery cases. METHODS: Measurements of physical components in the treatment room (gantry, cone, table, localization stereotactic radiation surgery frame, etc.) were incorporated into a script in MATLAB (MathWorks, Natick, MA) that produces three-dimensional visualizations of the components. A localization frame, used during simulation, fully contains the patient. This frame was used to represent a safety zone for collisions. Simple geometric objects are used to approximate the simulated components. The couch is represented as boxes, the gantry head and cone are represented by cylinders, and the patient safety zone can be represented by either a box or ellipsoid. These objects are translated and rotated based upon the beam geometry and the treatment isocenter to mimic treatment. A simple graphical user interface (GUI) was made in MATLAB (compatible with GNU Octave) to allow users to pass the treatment isocenter location, the initial and terminal gantry angles, the couch angle, and the number of angular points to visualize between the initial and terminal gantry angle. RESULTS: The GUI provides a fast and simple way to discover collisions in the treatment room before the treatment plan is completed. Twenty patient arcs were used as an end-to-end validation of the system. Seventeen of these appeared the same in the software as in the room. Three of the arcs appeared closer in the software than in the room. This is due to the treatment couch having rounded corners, whereas the software visualizes sharp corners. CONCLUSIONS: This simple GUI can be used to find the best orientation of beams for each patient. By finding collisions before a plan is being simulated in the treatment room, a user can save time due to replanning of cases.


Subject(s)
Radiosurgery , Computer Simulation , Humans , Imaging, Three-Dimensional , Radiotherapy Planning, Computer-Assisted , Software
3.
J Appl Clin Med Phys ; 21(3): 94-107, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32101368

ABSTRACT

PURPOSE: Dose-volume histogram (DVH) measurements have been integrated into commercially available quality assurance systems to provide a metric for evaluating accuracy of delivery in addition to gamma analysis. We hypothesize that tumor control probability and normal tissue complication probability calculations can provide additional insight beyond conventional dose delivery verification methods. METHODS: A commercial quality assurance system was used to generate DVHs of treatment plan using the planning CT images and patient-specific QA measurements on a phantom. Biological modeling was performed on the DVHs produced by both the treatment planning system and the quality assurance system. RESULTS: The complication-free tumor control probability, P+ , has been calculated for previously treated intensity modulated radiotherapy (IMRT) patients with diseases in the following sites: brain (-3.9% ± 5.8%), head-neck (+4.8% ± 8.5%), lung (+7.8% ± 1.3%), pelvis (+7.1% ± 12.1%), and prostate (+0.5% ± 3.6%). CONCLUSION: Dose measurements on a phantom can be used for pretreatment estimation of tumor control and normal tissue complication probabilities. Results in this study show how biological modeling can be used to provide additional insight about accuracy of delivery during pretreatment verification.


Subject(s)
Models, Biological , Neoplasms/radiotherapy , Organs at Risk/radiation effects , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/methods , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
4.
Med Phys ; 47(2): 352-362, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31724177

ABSTRACT

PURPOSE: Surface-guided radiation therapy (SGRT) is a nonionizing imaging approach for patient setup guidance, intra-fraction monitoring, and automated breath-hold gating of radiation treatments. SGRT employs the premise that the external patient surface correlates to the internal anatomy, to infer the treatment isocenter position at time of treatment delivery. Deformations and posture variations are known to impact the correlation between external and internal anatomy. However, the degree, magnitude, and algorithm dependence of this impact are not intuitive and currently no methods exist to assess this relationship. The primary aim of this work was to develop a framework to investigate and understand how a commercial optical surface imaging system (C-RAD, Uppsala, Sweden), which uses a nonrigid registration algorithm, handles rotations and surface deformations. METHODS: A workflow consisting of a female torso phantom and software-introduced transformations to the corresponding digital reference surface was developed. To benchmark and validate the approach, known rigid translations and rotations were first applied. Relevant breast radiotherapy deformations related to breast size, hunching/arching back, distended/deflated abdomen, and an irregular surface to mimic a cover sheet over the lower part of the torso were investigated. The difference between rigid and deformed surfaces was evaluated as a function of isocenter location. RESULTS: For all introduced rigid body transformations, C-RAD computed isocenter shifts were determined within 1 mm and 1˚. Additional translational shifts to correct for rotations as a function of isocenter location were determined with the same accuracy. For yaw setup errors, the difference in shift corrections between a plan with an isocenter placed in the center of the breast (BrstIso) and one located 12 cm superiorly (SCFIso) was 2.3 mm/1˚ in lateral direction. Pitch setup errors resulted in a difference of 2.1 mm/1˚ in vertical direction. For some of the deformation scenarios, much larger differences up to 16 mm and 7˚ in the calculated shifts between BrstIso and SCFIso were observed that could lead to large unintended gaps or overlap between adjacent matched fields if uncorrected. CONCLUSIONS: The methodology developed lends itself well for quality assurance (QA) of SGRT systems. The deformable C-RAD algorithm determined accurate shifts for rigid transformations, and this was independent of isocenter location. For surface deformations, the position of the isocenter had considerable impact on the registration result. It is recommended to avoid off-axis isocenters during treatment planning to optimally utilize the capabilities of the deformable image registration algorithm, especially when multiple isocenters are used with fields that share a field edge.


Subject(s)
Brachytherapy/methods , Breast/metabolism , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Algorithms , Computer Simulation , Female , Humans , Phantoms, Imaging , Quality Control , Reproducibility of Results , Surface Properties
5.
J BUON ; 23(1): 507-513, 2018.
Article in English | MEDLINE | ID: mdl-29745100

ABSTRACT

PURPOSE: Electronic portal imaging devices (EPIDs) are an integral part of the radiation oncology workflow for treatment setup verification. Several commercial EPID implementations are currently available, each with varying capabilities. To standardize performance evaluation, Task Group Report 58 (TG-58) and TG-142 outline specific image quality metrics to be measured. A LinaTech Image Viewing System (IVS), with the highest commercially available pixel matrix (2688x2688 pixels), was independently evaluated and compared to an Elekta iViewGT (1024x1024 pixels) and a Varian aSi-1000 (1024x768 pixels) using a PTW EPID QC Phantom. METHODS: The IVS, iViewGT, and aSi-1000 were each used to acquire 20 images of the PTW QC Phantom. The QC phantom was placed on the couch and aligned at isocenter. The images were exported and analyzed using the epidSoft image quality assurance (QA) software. The reported metrics were signal linearity, isotropy of signal linearity, signal-tonoise ratio (SNR), low contrast resolution, and high-contrast resolution. These values were compared between the three EPID solutions. RESULTS: Computed metrics demonstrated comparable results between the EPID solutions with the IVS outperforming the aSi-1000 and iViewGT in the low and high-contrast resolution analysis. CONCLUSION: The performance of three commercial EPID solutions have been quantified, evaluated, and compared using results from the PTW QC Phantom. The IVS outperformed the other panels in low and high-contrast resolution, but to fully realize the benefits of the IVS, the selection of the monitor on which to view the high-resolution images is important to prevent down sampling and visual of resolution.


Subject(s)
Equipment Design/methods , Imaging, Three-Dimensional/instrumentation , Humans , Imaging, Three-Dimensional/methods , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...