Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Nat Metab ; 6(9): 1695-1711, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39251875

ABSTRACT

While heterogeneity is a key feature of cancer, understanding metabolic heterogeneity at the single-cell level remains a challenge. Here we present 13C-SpaceM, a method for spatial single-cell isotope tracing that extends the previously published SpaceM method with detection of 13C6-glucose-derived carbons in esterified fatty acids. We validated 13C-SpaceM on spatially heterogeneous models using liver cancer cells subjected to either normoxia-hypoxia or ATP citrate lyase depletion. This revealed substantial single-cell heterogeneity in labelling of the lipogenic acetyl-CoA pool and in relative fatty acid uptake versus synthesis hidden in bulk analyses. Analysing tumour-bearing brain tissue from mice fed a 13C6-glucose-containing diet, we found higher glucose-dependent synthesis of saturated fatty acids and increased elongation of essential fatty acids in tumours compared with healthy brains. Furthermore, our analysis uncovered spatial heterogeneity in lipogenic acetyl-CoA pool labelling in tumours. Our method enhances spatial probing of metabolic activities in single cells and tissues, providing insights into fatty acid metabolism in homoeostasis and disease.


Subject(s)
Fatty Acids , Single-Cell Analysis , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Single-Cell Analysis/methods , Animals , Mice , Humans , Acetyl Coenzyme A/metabolism , Glucose/metabolism , Carbon Isotopes , Neoplasms/metabolism , Lipogenesis , Cell Line, Tumor , Liver Neoplasms/metabolism
2.
J Am Soc Nephrol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771634

ABSTRACT

BACKGROUND: Diabetes is expected to directly impact renal glycosylation, yet to date, there has not been a comprehensive evaluation of alterations in N-glycan composition in the glomeruli of patients with diabetic kidney disease (DKD). METHODS: We used untargeted mass spectrometry imaging to identify N-glycan structures in healthy and sclerotic glomeruli in FFPE sections from needle biopsies of five patients with DKD and three healthy kidney samples. Regional proteomics was performed on glomeruli from additional biopsies from the same patients to compare the abundances of enzymes involved in glycosylation. Secondary analysis of single nuclei transcriptomics (snRNAseq) data was used to inform on transcript levels of glycosylation machinery in different cell types and states. RESULTS: We detected 120 N-glycans, and among them identified twelve of these protein post-translated modifications that were significantly increased in glomeruli. All glomeruli-specific N-glycans contained an N-acetyllactosamine (LacNAc) epitope. Five N-glycan structures were highly discriminant between sclerotic and healthy glomeruli. Sclerotic glomeruli had an additional set of glycans lacking fucose linked to their core, and they did not show tetra-antennary structures that are common in healthy glomeruli. Orthogonal omics analyses revealed lower protein abundance and lower gene expression involved in synthesizing fucosylated and branched N-glycans in sclerotic podocytes. In snRNAseq and regional proteomics analyses, we observed that genes and/or proteins involved in sialylation and LacNAc synthesis were also downregulated in DKD glomeruli, but this alteration remained undetectable by our spatial N-glycomics assay. CONCLUSIONS: Integrative spatial glycomics, proteomics, and transcriptomics revealed protein N-glycosylation characteristic of sclerotic glomeruli in DKD.

3.
Nat Commun ; 15(1): 4551, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811562

ABSTRACT

Although the effects of genetic and environmental perturbations on multicellular organisms are rarely restricted to single phenotypic layers, our current understanding of how developmental programs react to these challenges remains limited. Here, we have examined the phenotypic consequences of disturbing the bicoid regulatory network in early Drosophila embryos. We generated flies with two extra copies of bicoid, which causes a posterior shift of the network's regulatory outputs and a decrease in fitness. We subjected these flies to EMS mutagenesis, followed by experimental evolution. After only 8-15 generations, experimental populations have normalized patterns of gene expression and increased survival. Using a phenomics approach, we find that populations were normalized through rapid increases in embryo size driven by maternal changes in metabolism and ovariole development. We extend our results to additional populations of flies, demonstrating predictability. Together, our results necessitate a broader view of regulatory network evolution at the systems level.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Gene Dosage , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/embryology , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Phenotype , Male , Embryo, Nonmammalian/metabolism , Drosophila/genetics , Drosophila/embryology , Drosophila/metabolism , Mutagenesis , Trans-Activators
5.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464218

ABSTRACT

Metabolism has emerged as a key factor in homeostasis and disease including cancer. Yet, little is known about the heterogeneity of metabolic activity of cancer cells due to the lack of tools to directly probe it. Here, we present a novel method, 13C-SpaceM for spatial single-cell isotope tracing of glucose-dependent de novo lipogenesis. The method combines imaging mass spectrometry for spatially-resolved detection of 13C6-glucose-derived 13C label incorporated into esterified fatty acids with microscopy and computational methods for data integration and analysis. We validated 13C-SpaceM on a spatially-heterogeneous normoxia-hypoxia model of liver cancer cells. Investigating cultured cells, we revealed single-cell heterogeneity of lipogenic acetyl-CoA pool labelling degree upon ACLY knockdown that is hidden in the bulk analysis and its effect on synthesis of individual fatty acids. Next, we adapted 13C-SpaceM to analyze tissue sections of mice harboring isocitrate dehydrogenase (IDH)-mutant gliomas. We found a strong induction of de novo fatty acid synthesis in the tumor tissue compared to the surrounding brain. Comparison of fatty acid isotopologue patterns revealed elevated uptake of mono-unsaturated and essential fatty acids in the tumor. Furthermore, our analysis uncovered substantial spatial heterogeneity in the labelling of the lipogenic acetyl-CoA pool indicative of metabolic reprogramming during microenvironmental adaptation. Overall, 13C-SpaceM enables novel ways for spatial probing of metabolic activity at the single cell level. Additionally, this methodology provides unprecedented insight into fatty acid uptake, synthesis and modification in normal and cancerous tissues.

6.
Nat Cell Biol ; 26(2): 181-193, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177284

ABSTRACT

Mammalian developmental timing is adjustable in vivo by preserving pre-implantation embryos in a dormant state called diapause. Inhibition of the growth regulator mTOR (mTORi) pauses mouse development in vitro, yet how embryonic dormancy is maintained is not known. Here we show that mouse embryos in diapause are sustained by using lipids as primary energy source. In vitro, supplementation of embryos with the metabolite L-carnitine balances lipid consumption, puts the embryos in deeper dormancy and boosts embryo longevity. We identify FOXO1 as an essential regulator of the energy balance in dormant embryos and propose, through meta-analyses of dormant cell signatures, that it may be a common regulator of dormancy across adult tissues. Our results lift a constraint on in vitro embryo survival and suggest that lipid metabolism may be a critical metabolic transition relevant for longevity and stem cell function across tissues.


Subject(s)
Embryo, Mammalian , Lipid Metabolism , Animals , Mice , Embryonic Development/physiology , Energy Metabolism , Mammals
7.
Mol Syst Biol ; 19(11): e10571, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37842805

ABSTRACT

Spatial omics has emerged as a rapidly growing and fruitful field with hundreds of publications presenting novel methods for obtaining spatially resolved information for any omics data type on spatial scales ranging from subcellular to organismal. From a technology development perspective, spatial omics is a highly interdisciplinary field that integrates imaging and omics, spatial and molecular analyses, sequencing and mass spectrometry, and image analysis and bioinformatics. The emergence of this field has not only opened a window into spatial biology, but also created multiple novel opportunities, questions, and challenges for method developers. Here, we provide the perspective of technology developers on what makes the spatial omics field unique. After providing a brief overview of the state of the art, we discuss technological enablers and challenges and present our vision about the future applications and impact of this melting pot.


Subject(s)
Genomics , Proteomics , Genomics/methods , Proteomics/methods , Metabolomics/methods , Computational Biology , Mass Spectrometry
8.
Nat Metab ; 5(9): 1443-1445, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37679554
9.
J Clin Invest ; 133(20)2023 10 16.
Article in English | MEDLINE | ID: mdl-37616058

ABSTRACT

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality; however, few mechanistic biomarkers are available for high-risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from the Chronic Renal Insufficiency Cohort (CRIC) study, the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in Type 2 Diabetes (SMART2D), and the American Indian Study determined whether urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in the CRIC study and SMART2D. ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in the CRIC study, SMART2D, and the American Indian study. Empagliflozin lowered UAdCR in nonmacroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology, and single-cell transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mTOR. Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Animals , Mice , Diabetic Nephropathies/pathology , Adenine , Diabetes Mellitus, Experimental/complications , Kidney/metabolism , Biomarkers , TOR Serine-Threonine Kinases
10.
PLoS Biol ; 21(8): e3002198, 2023 08.
Article in English | MEDLINE | ID: mdl-37594988

ABSTRACT

Pathogenic bacteria proliferating inside mammalian host cells need to rapidly adapt to the intracellular environment. How they achieve this and scavenge essential nutrients from the host has been an open question due to the difficulties in distinguishing between bacterial and host metabolites in situ. Here, we capitalized on the inability of mammalian cells to metabolize mannitol to develop a stable isotopic labeling approach to track Salmonella enterica metabolites during intracellular proliferation in host macrophage and epithelial cells. By measuring label incorporation into Salmonella metabolites with liquid chromatography-mass spectrometry (LC-MS), and combining it with metabolic modeling, we identify relevant carbon sources used by Salmonella, uncover routes of their metabolization, and quantify relative reaction rates in central carbon metabolism. Our results underline the importance of the Entner-Doudoroff pathway (EDP) and the phosphoenolpyruvate carboxylase for intracellularly proliferating Salmonella. More broadly, our metabolic labeling strategy opens novel avenues for understanding the metabolism of pathogens inside host cells.


Subject(s)
Salmonella enterica , Salmonella , Animals , Carbon , Chromatography, Liquid , Isotopes , Mammals
11.
medRxiv ; 2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37398187

ABSTRACT

Diabetic kidney disease (DKD) can lead to end-stage kidney disease (ESKD) and mortality, however, few mechanistic biomarkers are available for high risk patients, especially those without macroalbuminuria. Urine from participants with diabetes from Chronic Renal Insufficiency Cohort (CRIC), Singapore Study of Macro-Angiopathy and Reactivity in Type 2 Diabetes (SMART2D), and the Pima Indian Study determined if urine adenine/creatinine ratio (UAdCR) could be a mechanistic biomarker for ESKD. ESKD and mortality were associated with the highest UAdCR tertile in CRIC (HR 1.57, 1.18, 2.10) and SMART2D (HR 1.77, 1.00, 3.12). ESKD was associated with the highest UAdCR tertile in patients without macroalbuminuria in CRIC (HR 2.36, 1.26, 4.39), SMART2D (HR 2.39, 1.08, 5.29), and Pima Indian study (HR 4.57, CI 1.37-13.34). Empagliflozin lowered UAdCR in non-macroalbuminuric participants. Spatial metabolomics localized adenine to kidney pathology and transcriptomics identified ribonucleoprotein biogenesis as a top pathway in proximal tubules of patients without macroalbuminuria, implicating mammalian target of rapamycin (mTOR). Adenine stimulated matrix in tubular cells via mTOR and stimulated mTOR in mouse kidneys. A specific inhibitor of adenine production was found to reduce kidney hypertrophy and kidney injury in diabetic mice. We propose that endogenous adenine may be a causative factor in DKD.

12.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37329888

ABSTRACT

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Subject(s)
Liver Neoplasms , NF-kappa B , Humans , NF-kappa B/metabolism , Protein Kinases/metabolism , Necroptosis , Inflammation/pathology , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis
13.
Front Mol Biosci ; 9: 1022775, 2022.
Article in English | MEDLINE | ID: mdl-36465564

ABSTRACT

Human disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements. Mass spectrometry imaging methods were optimized to boost the number of annotatable molecules in agarose inflated lung samples. This optimized protocol permitted the observation of unique lipid distributions within several airway regions in the lung tissue block. Laser capture microdissection of these airway regions followed by high-resolution proteomic analysis allowed us to begin linking the lipidome with the proteome in a spatially resolved manner, where we observed proteins with high abundance specifically localized to the airway regions. We also compared our mass spectrometry results to lung tissue samples preserved using two other inflation/embedding media, but we identified several pitfalls with the sample preparation steps using this preservation method. Overall, we demonstrated the versatility of the inflation method, and we can start to reveal how the metabolome, lipidome, and proteome are connected spatially in human lungs and across disease states through a variety of different experiments.

14.
Front Mol Biosci ; 9: 1021889, 2022.
Article in English | MEDLINE | ID: mdl-36504713

ABSTRACT

Imaging mass spectrometry (MS) is becoming increasingly applied for single-cell analyses. Multiple methods for imaging MS-based single-cell metabolomics were proposed, including our recent method SpaceM. An important step in imaging MS-based single-cell metabolomics is the assignment of MS intensities from individual pixels to single cells. In this process, referred to as pixel-cell deconvolution, the MS intensities of regions sampled by the imaging MS laser are assigned to the segmented single cells. The complexity of the contributions from multiple cells and the background, as well as lack of full understanding of how input from molecularly-heterogeneous areas translates into mass spectrometry intensities make the cell-pixel deconvolution a challenging problem. Here, we propose a novel approach to evaluate pixel-cell deconvolution methods by using a molecule detectable both by mass spectrometry and fluorescent microscopy, namely fluorescein diacetate (FDA). FDA is a cell-permeable small molecule that becomes fluorescent after internalisation in the cell and subsequent cleavage of the acetate groups. Intracellular fluorescein can be easily imaged using fluorescence microscopy. Additionally, it is detectable by matrix-assisted laser desorption/ionisation (MALDI) imaging MS. The key idea of our approach is to use the fluorescent levels of fluorescein as the ground truth to evaluate the impact of using various pixel-cell deconvolution methods onto single-cell fluorescein intensities obtained by the SpaceM method. Following this approach, we evaluated multiple pixel-cell deconvolution methods, the 'weighted average' method originally proposed in the SpaceM method as well as the novel 'linear inverse modelling' method. Despite the potential of the latter method in resolving contributions from individual cells, this method was outperformed by the weighted average approach. Using the ground truth approach, we demonstrate the extent of the ion suppression effect which considerably worsens the pixel-cell deconvolution quality. For compensating the ion suppression individually for each analyte, we propose a novel data-driven approach. We show that compensating the ion suppression effect in a single-cell metabolomics dataset of co-cultured HeLa and NIH3T3 cells considerably improved the separation between both cell types. Finally, using the same ground truth, we evaluate the impact of drop-outs in the measurements and discuss the optimal filtering parameters of SpaceM processing steps before pixel-cell deconvolution.

15.
Cell Rep ; 41(11): 111832, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516782

ABSTRACT

How histone modifications affect animal development remains difficult to ascertain. Despite the prevalence of histone 3 lysine 4 monomethylation (H3K4me1) on enhancers, hypomethylation appears to have minor effects on phenotype and viability. Here, we genetically reduce H3K4me1 deposition in Drosophila melanogaster and find that hypomethylation reduces transcription factor enrichment in nuclear microenvironments, disrupts gene expression, and reduces phenotypic robustness. Using a developmental phenomics approach, we find changes in morphology, metabolism, behavior, and offspring production. However, many phenotypic changes are only detected when hypomethylated flies develop outside of standard laboratory environments or with specific genetic backgrounds. Therefore, quantitative phenomics measurements can unravel how pleiotropic modulators of gene expression affect developmental robustness under conditions resembling the natural environments of a species.


Subject(s)
Drosophila melanogaster , Enhancer Elements, Genetic , Animals , Drosophila melanogaster/metabolism , Phenomics , Histones/metabolism , Phenotype
16.
Commun Biol ; 5(1): 714, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854100

ABSTRACT

SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state amenable to its replication. Here we show that analysis of Master Regulator proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation of Master Regulators enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host cell state refractory to virus replication. To test their functional relevance, we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire of repressed Master Regulators, based on their experimentally elucidated, context-specific mechanism of action. Overall, 15 of the 18 drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model for host-directed pharmacological therapy is fully generalizable and can be deployed to identify drugs targeting host cell-based Master Regulator signatures induced by virtually any pathogen.


Subject(s)
COVID-19 Drug Treatment , Virus Diseases , Humans , SARS-CoV-2 , Transcriptome , Virus Replication
17.
J Am Soc Mass Spectrom ; 33(8): 1577-1580, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35802124

ABSTRACT

Investigation of the spatial distribution of N-glycans in tissue specimens has emerged as a powerful tool in clinical research, in part, because altered N-glycans are often a hallmark of disease progression. Mass spectrometry imaging of N-glycans relies on peptide N-glycanase spraying and tissue incubation for efficient in situ release of N-glycans from their carrier proteins. Unstandardized and uncontrolled incubation steps often cause significant delocalization of released N-glycans, resulting in the inability to link given N-glycan composition to a specific microanatomical region in the tissue. Herein, we optimized the incubation step to provide accurate and sensitive MALDI-MSI of N-glycans. Specifically, we tested saturated solutions of various salts that maintain constant relative humidity in the incubation chamber. We showed that the best performance was achieved using a saturated solution of KNO3 that maintains an 89% RH. Under these conditions, near maximal sensitivity was achieved with the minutest ion delocalization, which we demonstrated at a 35 µm spatial resolution, where we observed six distinct spatial patterns that colocalize to distinct microanatomical compartments in a kidney nephrectomy tissue section.


Subject(s)
Kidney , Polysaccharides , Humidity , Kidney/chemistry , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Polysaccharides/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
18.
Anal Chem ; 94(25): 8983-8991, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35708227

ABSTRACT

On-tissue chemical derivatization is a valuable tool for expanding compound coverage in untargeted metabolomic studies with matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Applying multiple derivatization agents in parallel increases metabolite coverage even further but results in large and more complex datasets that can be challenging to analyze. In this work, we present a pipeline to provide rigorous annotations for on-tissue derivatized MSI data using Metaspace. To test and validate the pipeline, maize roots were used as a model system to obtain MSI datasets after chemical derivatization with four different reagents, Girard's T and P for carbonyl groups, coniferyl aldehyde for primary amines, and 2-picolylamine for carboxylic acids. Using this pipeline helped us annotate 631 unique metabolites from the CornCyc/BraChem database compared to 256 in the underivatized dataset, yet, at the same time, shortening the processing time compared to manual processing and providing robust and systematic scoring and annotation. We have also developed a method to remove false derivatized annotations, which can clean 5-25% of false derivatized annotations from the derivatized data, depending on the reagent. Taken together, our pipeline facilitates the use of broadly targeted spatial metabolomics using multiple derivatization reagents.


Subject(s)
Metabolomics , Zea mays , Indicators and Reagents , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
19.
Sci Adv ; 8(23): eabn4965, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35675394

ABSTRACT

Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.


Subject(s)
Kidney Diseases , Kidney , Humans , Kidney/pathology , Kidney Diseases/metabolism , Metabolomics/methods , Proteomics/methods , Transcriptome
20.
NPJ Syst Biol Appl ; 8(1): 15, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501398

ABSTRACT

Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial-immune cell interactions regulating inflammatory responses, is not well known. Available experimental approaches are insufficient to properly analyse this complex system, and computational predictions and targeted data integration are needed as an alternative approach. In this work, we propose an integrated computational biology framework that models how infection alters intracellular signalling of epithelial cells and how this change impacts the systemic immune response through modified interactions between epithelial cells and local immune cell populations. As a proof-of-concept, we focused on the role of intestinal and upper-airway epithelial infection. To characterise the modified epithelial-immune interactome, we integrated intra- and intercellular networks with single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic organoids as well as from infected airway ciliated epithelial cells. This integrated methodology has proven useful to point out specific epithelial-immune interactions driving inflammation during disease response, and propose relevant molecular targets to guide focused experimental analysis.


Subject(s)
COVID-19 , Virus Diseases , Epithelial Cells , Humans , SARS-CoV-2 , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL