Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36672527

ABSTRACT

FoxL1+telocytes (TCFoxL1+) are novel gastrointestinal subepithelial cells that form a communication axis between the mesenchyme and epithelium. TCFoxL1+ are strategically positioned to be key contributors to the microenvironment through production and secretion of growth factors and extracellular matrix (ECM) proteins. In recent years, the alteration of the bone morphogenetic protein (BMP) signaling in TCFoxL1+ was demonstrated to trigger a toxic microenvironment with ECM remodeling that leads to the development of pre-neoplastic gastric lesions. However, a comprehensive analysis of variations in the ECM composition and its associated proteins in gastric neoplasia linked to TCFoxL1+ dysregulation has never been performed. This study provides a better understanding of how TCFoxL1+ defective BMP signaling participates in the gastric pre-neoplastic microenvironment. Using a proteomic approach, we determined the changes in the complete matrisome of BmpR1a△FoxL1+ and control mice, both in total antrum as well as in isolated mesenchyme-enriched antrum fractions. Comparative proteomic analysis revealed that the deconstruction of the gastric antrum led to a more comprehensive analysis of the ECM fraction of gastric tissues microenvironment. These results show that TCFoxL1+ are key members of the mesenchymal cell population and actively participate in the establishment of the matrisomic fraction of the microenvironment, thus influencing epithelial cell behavior.

2.
Cells ; 10(11)2021 10 29.
Article in English | MEDLINE | ID: mdl-34831177

ABSTRACT

FoxL1+-Telocytes (TCFoxL1+) are subepithelial cells that form a network underneath the epithelium. We have shown that without inflammatory stress, mice with loss of function in the BMP signalling pathway in TCFoxL1+ (BmpR1aΔFoxL1+) initiated colonic neoplasia. Although TCFoxL1+ are modulated in IBD patients, their specific role in this pathogenesis remains unclear. Thus, we investigated how the loss of BMP signalling in TCFoxL1+ influences the severity of inflammation and fosters epithelial recovery after inflammatory stress. BmpR1a was genetically ablated in mouse colonic TCFoxL1+. Experimental colitis was performed using a DSS challenge followed by recovery steps to assess wound healing. Physical barrier properties, including mucus composition and glycosylation, were assessed by alcian blue staining, immunofluorescences and RT-qPCR. We found that BmpR1aΔFoxL1+ mice had impaired mucus quality, and upon exposure to inflammatory challenges, they had increased susceptibility to experimental colitis and delayed healing. In addition, defective BMP signalling in TCFoxL1+ altered the functionality of goblet cells, thereby affecting mucosal structure and promoting bacterial invasion. Following inflammatory stress, TCFoxL1+ with impaired BMP signalling lose their homing signal for optimal distribution along the epithelium, which is critical in tissue regeneration after injury. Overall, our findings revealed key roles of BMP signalling in TCFoxL1+ in IBD pathogenesis.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Colitis/metabolism , Disease Susceptibility , Mucus/metabolism , Signal Transduction , Telocytes/metabolism , Animals , Bone Morphogenetic Protein Receptors, Type I/metabolism , Colon/pathology , Goblet Cells/metabolism , Inflammation/pathology , Inflammatory Bowel Diseases/pathology , Mice, Inbred C57BL , Mice, Transgenic , Mucins/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Protein Processing, Post-Translational , Stress, Physiological , Wound Healing
3.
Vaccine ; 37(30): 3957-3960, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31155419

ABSTRACT

Cervical cancer is a global public health problem and human papillomavirus (HPV) 16 accounts for approximately 50% of cases worldwide. Although there are several types of HPV therapeutic vaccines in clinical research, there are currently not approved for use in humans. We developed the fusion protein LALF32-51-E7 (hereafter denominated CIGB550-E7) defined by a cell-penetrating peptide linked to an E7 mutein for the treatment of HPV16-associated tumors. We have demonstrated previously the benefit on antitumor response induced by the immunization with CIGB550-E7 admixed with very small size proteoliposomes (VSSP) adjuvant compared with the adjuvant-free immunization. In this study, we obtained a similar antitumor response in mice immunized with CIGB550-E7 admixed with the new adjuvant sVSSP that does not contain any animal-derived product. Also, the immunization with the above mentioned vaccine preparation induced a cell-mediated immune response. Our results are encouraging for the future clinical trials with the vaccine candidate CIGB550-E7+sVSSP.


Subject(s)
Human papillomavirus 16/pathogenicity , Papillomavirus Infections/immunology , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/therapeutic use , Adjuvants, Immunologic , Animals , Cell-Penetrating Peptides/chemistry , Female , Human papillomavirus 16/immunology , Humans , Immunity, Cellular/immunology , Immunity, Cellular/physiology , Mice , Mice, Inbred C57BL , Papillomavirus Infections/virology , Papillomavirus Vaccines/immunology , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccination
4.
Clin Exp Metastasis ; 34(3-4): 241-249, 2017 04.
Article in English | MEDLINE | ID: mdl-28417212

ABSTRACT

One important goal of cancer immunotherapy is to prevent and treat tumor metastasis. We have previously reported the significant antitumor effect induced by the immunization with our human papillomavirus therapeutic protein-based vaccine (LALF32-51-E7) without adjuvant and admixed with clinically relevant adjuvants in the subcutaneous TC-1 tumor challenge model. In the present study, we evaluated the efficacy of the above mentioned vaccine formulations in controlling the hematogenous spread of TC-1 tumor cells using a more tumourigenic clone named TC-1* and other intravenous injection site less stressful than the tail vein. We generated a lung metastasis model by injecting TC-1* cells into the retro-orbital venous sinus and this is the first study describing it. Also, this is the first study that demonstrates the efficacy of the immunization with LALF32-51-E7 without adjuvant and admixed with VSSP or Al(OH)3 in controlling metastatic tumors increasing the survival of the mice. Our TC-1 lung metastasis model can be used to test the efficacy of other immunotherapeutic strategies based on E6/E7 antigens.


Subject(s)
Immunotherapy , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Papillomavirus E7 Proteins/immunology , Papillomavirus Vaccines/therapeutic use , Uterine Cervical Neoplasms/therapy , Animals , Female , Genetic Vectors , Humans , Lung Neoplasms/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Proteolipids , T-Lymphocytes, Cytotoxic , Tumor Cells, Cultured , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...