Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ultrason Sonochem ; 94: 106320, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36780809

ABSTRACT

The degradation of paracetamol, a widely found emerging pharmaceutical contaminant, was investigated under a wide range of single-frequency and dual-frequency ultrasonic irradiations. For single-frequency ultrasonic irradiation, plate transducers of 22, 98, 200, 300, 400, 500, 760, 850, 1000, and 2000 kHz were employed and for dual-frequency ultrasonic irradiation, the plate transducers were coupled with a 20 kHz ultrasonic horn in opposing configuration. The sonochemical activity was quantified using two dosimetry methods to measure the yield of HO• and H2O2 separately, as well as sonochemiluminescence measurement. Moreover, the severity of the bubble collapses as well as the spatial and size distribution of the cavitation bubbles were evaluated via sonoluminescence measurement. The paracetamol degradation rate was maximised at 850 kHz, in both single and dual-frequency ultrasonic irradiation. A synergistic index higher than 1 was observed for all degrading frequencies (200 - 1000 kHz) under dual-frequency ultrasound irradiation, showing the capability of dual-frequency system for enhancing pollutant degradation. A comparison of the results of degradation, dosimetry, and sonoluminescence intensity measurement revealed the stronger dependency of the degradation on the yield of HO• for both single and dual-frequency systems, which confirms degradation by HO• as the main removal mechanism. However, an enhanced degradation for frequencies higher than 500 kHz was observed despite a lower HO• yield, which could be attributed to the improved mass transfer of hydrophilic compounds at higher frequencies. The sonoluminescence intensity measurements showed that applying dual-frequency ultrasonic irradiation for 200 and 400 kHz made the bubbles larger and less uniform in size, with a portion of which not contributing to the yield of reactive oxidant species, whereas for the rest of the frequencies, dual-frequency ultrasound irradiation made the cavitation bubbles smaller and more uniform, resulting in a linear correlation between the overall sonoluminescence intensity and the yield of reactive oxidant species.

2.
Ultrason Sonochem ; 76: 105656, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34274706

ABSTRACT

Contaminants of emerging concern (CEC) such as pharmaceuticals commonly found in urban and industrial wastewater are a potential threat to human health and have negative environmental impact. Most wastewater treatment plants cannot efficiently remove these compounds and therefore, many pharmaceuticals end up in aquatic ecosystems, inducing problems such as toxicity and antibiotic-resistance. This review reports the extent of pharmaceutical removal by individual processes such as bioreactors, advanced oxidation processes and membrane filtration systems, all of which are not 100% efficient and can lead to the direct discharge of pharmaceuticals into water bodies. Also, the importance of understanding biotransformation of pharmaceutical compounds during biological and ultrasound treatment, and its impact on treatment efficacy will be reviewed. Different combinations of the processes above, either as an integrated configuration or in series, will be discussed in terms of their degradation efficiency and scale-up capabilities. The trace quantities of pharmaceutical compounds in wastewater and scale-up issues of ultrasound highlight the importance of membrane filtration as a concentration and volume reduction treatment step for wastewater, which could subsequently be treated by ultrasound.


Subject(s)
Membranes, Artificial , Pharmaceutical Preparations/isolation & purification , Sonication , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Water/chemistry
3.
J Environ Manage ; 289: 112480, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33819652

ABSTRACT

The main goal of this work is to evaluate the usage of ozone (O3) as a pre-treatment or simultaneously combined with UVC/H2O2 process for the polishing stage treatment of real bio-treated slaughterhouse wastewater. Two different treatment strategies were tested: i) pre-ozonation of the wastewater followed by an UVC/H2O2 process (two-step treatment); ii) simultaneous application of O3/UVC/H2O2 combined process (one-step treatment). For the two-step strategy, the pre-treatment with 30 mg O3/min for 10 min reduces significantly total suspended solids (TSS), turbidity and colour, reducing light filtering effects and increasing the efficiency of the following UVC/H2O2 process. In turn, the one-step treatment strategy (O3/UVC/H2O2) allows a more efficient use of injected O3 by reducing the amount of O3 required (from 273 to 189 mg O3/Leffluent) to achieve similar mineralization levels. The real bio-treated slaughterhouse wastewater treated by O3/UVC/H2O2 process achieved final colour values of 20 Pt/Co, TSS of 35 mg/L and COD of 61 mg O2/L, allowing its direct discharge into water compartments according to European Council Directive 91/271/EEC.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Abattoirs , Hydrogen Peroxide , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical/analysis
4.
Ultrason Sonochem ; 71: 105359, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33291062

ABSTRACT

This paper presents an intensification study of an ozonation process through an ultrasonic pre-treatment for the elimination of humic substances in water and thus, improve the quality of water treatment systems for human consumption. Humic acids were used as representative of natural organic matter in real waters which present low biodegradability and a high potential for trihalomethane formation. Ultrasonic frequency (98 kHz, 300 kHz and 1 MHz), power (10-40 W) and sonicated volume (150-400 mL) was varied to assess the efficiency of the ultrasonic pre-treatment in the subsequent ozonation process. A direct link between hydroxyl radical (HO) formation and fluorescence reduction was observed during sonication pre-treatment, peaking at 300 kHz and maximum power density. Ultrasound, however, did not reduce total organic carbon (TOC). Injected ozone (O3) dose and reaction time were also evaluated during the ozonation treatment. With 300 kHz and 40 W ultrasonic pre-treatment and the subsequent ozonation step (7.4 mg O3/Lgas), TOC was reduced from 21 mg/L to 13.5 mg/L (36% reduction). HO attack seems to be the main degradation mechanism during ozonation. A strong reduction in colour (85%) and SUVA254 (70%) was also measured. Moreover, changes in the chemical structure of the macromolecule were observed that led to the formation of oxidation by-products of lower molecular weight.


Subject(s)
Heterocyclic Compounds/chemistry , Humic Substances/analysis , Ultrasonic Waves , Hydroxyl Radical/chemistry
5.
Ultrason Sonochem ; 64: 104986, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32044683

ABSTRACT

This work reports the influence of ultrasound alone and combined with ozone for the treatment of real abattoir wastewater. Three different frequencies were studied (44, 300 and 1000 kHz) at an applied power of 40 W. The injected ozone dose was fixed at 71 mg/L and the treatment time varied from 1 to 60 min. Using ultrasound alone, 300 kHz was the only frequency showing a reduction in chemical oxygen demand (COD, 18% reduction) and biological oxygen demand (BOD, 50% reduction), while no diminution in microbial content was measured for any of the frequencies studied. Combining ultrasound with ozone, on the contrary, led to a significant decrease in COD (44%) and BOD (78%) removal for the three frequencies under study. A complete inactivation of total coliforms (TC) was obtained, as well as a final value of 99 CFU/mL in total viable counts (TVC, 5 log reduction). That is, the ozonation-sonication combined system was the only treatment method (compared to sonication and ozonation alone) reaching direct discharge limits, as well as meeting drinking water standards for microbial disinfection (TC and TVC).


Subject(s)
Abattoirs , Ozone/chemistry , Sonication , Waste Disposal, Fluid/methods , Wastewater/chemistry , Hydroxyl Radical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL