Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Ann Neurol ; 93(1): 184-195, 2023 01.
Article in English | MEDLINE | ID: mdl-36331161

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the relationship between Parkinson's disease (PD) with dementia and cortical proteinopathies in a large population of pathologically confirmed patients with PD. METHODS: We reviewed clinical data from all patients with autopsy data seen in the Movement Disorders Center at Washington University, St. Louis, between 1996 and 2019. All patients with a diagnosis of PD based on neuropathology were included. We used logistic regression and multivariate analysis of covariance (MANCOVA) to investigate the relationship between neuropathology and dementia. RESULTS: A total of 165 patients with PD met inclusion criteria. Among these, 128 had clinical dementia. Those with dementia had greater mean ages of motor onset and death but equivalent mean disease duration. The delay between motor symptom onset and dementia was 1 year or less in 14 individuals, meeting research diagnostic criteria for possible or probable dementia with Lewy bodies (DLB). Braak Lewy body stage was associated with diagnosis of dementia, whereas severities of Alzheimer's disease neuropathologic change (ADNC) and small vessel pathology did not. Pathology of individuals diagnosed with DLB did not differ significantly from that of other patients with PD with dementia. Six percent of individuals with PD and dementia did not have neocortical Lewy bodies; and 68% of the individuals with PD but without dementia did have neocortical Lewy bodies. INTERPRETATION: Neocortical Lewy bodies almost always accompany dementia in PD; however, they also appear in most PD patients without dementia. In some cases, dementia may occur in patients with PD without neocortical Lewy bodies, ADNC, or small vessel disease. Thus, other factors not directly related to these classic neuropathologic features may contribute to PD dementia. ANN NEUROL 2023;93:184-195.


Subject(s)
Alzheimer Disease , Lewy Body Disease , Neocortex , Parkinson Disease , Humans , Lewy Bodies/pathology , Parkinson Disease/complications , Lewy Body Disease/pathology , Neocortex/pathology , Alzheimer Disease/pathology
2.
Eur J Neurol ; 29(8): 2220-2231, 2022 08.
Article in English | MEDLINE | ID: mdl-35384155

ABSTRACT

BACKGROUND AND PURPOSE: Progressive supranuclear palsy (PSP) encompasses a broader range of disease courses than previously appreciated. The most frequent clinical presentations of PSP are Richardson syndrome (RS) and PSP with a predominant Parkinsonism phenotype (PSP-P). Time to reach gait dependence and cognitive impairment have been proposed as prognostic disease milestones. Genetic polymorphisms in TRIM11 and SLC2A13 genes have been associated with longer disease duration (DD). METHODS: Methods used include retrospective chart review, genetic single nucleotide polymorphism analyses (in three cases), and neuropathology. RESULTS: We identified four cases with long (>10-15 years) or very long (>15 years) DD. Stage 1 PSP tau pathology was present in two cases (one PSP-P and one undifferentiated phenotype), whereas pallidonigroluysian atrophy (PSP-RS) and Stage 4/6 (PSP-P) PSP pathology were found in the other two cases. Three cases were homozygous for the rs564309-C allele of the TRIM11 gene and the H1 MAPT haplotype. Two were heterozygous for rs2242367 (G/A) in SLC2A13, whereas the third was homozygous for the G-allele. CONCLUSIONS: We propose a protracted course subtype of PSP (PC-PSP) based on clinical or neuropathological criteria in two cases with anatomically restricted PSP pathology, and very long DD and slower clinical progression in the other two cases. The presence of the rs564309-C allele may influence the protracted disease course. Crystallizing the concept of PC-PSP is important to further understand the pathobiology of tauopathies in line with current hypotheses of protein misfolding, seeding activity, and propagation.


Subject(s)
Parkinsonian Disorders , Supranuclear Palsy, Progressive , Disease Progression , Glucose Transport Proteins, Facilitative/genetics , Humans , Parkinsonian Disorders/pathology , Polymorphism, Single Nucleotide , Retrospective Studies , Supranuclear Palsy, Progressive/pathology , Tauopathies/pathology , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , tau Proteins/metabolism
3.
Neurol Genet ; 7(2): e557, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33987465

ABSTRACT

OBJECTIVE: To discover genetic determinants of Parkinson disease (PD) motor subtypes, including tremor dominant (TD) and postural instability/gait difficulty (PIGD) forms. METHODS: In 3,212 PD cases of European ancestry, we performed a genome-wide association study (GWAS) examining 2 complementary outcome traits derived from the Unified Parkinson's Disease Rating Scale, including dichotomous motor subtype (TD vs PIGD) or a continuous tremor/PIGD score ratio. Logistic or linear regression models were adjusted for sex, age at onset, disease duration, and 5 ancestry principal components, followed by meta-analysis. RESULTS: Among 71 established PD risk variants, we detected multiple suggestive associations with PD motor subtype, including GPNMB (rs199351, p subtype = 0.01, p ratio = 0.03), SH3GL2 (rs10756907, p subtype = 0.02, p ratio = 0.01), HIP1R (rs10847864, p subtype = 0.02), RIT2 (rs12456492, p subtype = 0.02), and FBRSL1 (rs11610045, p subtype = 0.02). A PD genetic risk score integrating all 71 PD risk variants was also associated with subtype ratio (p = 0.026, ß = -0.04, 95% confidence interval = -0.07-0). Based on top results of our GWAS, we identify a novel suggestive association at the STK32B locus (rs2301857, p ratio = 6.6 × 10-7), which harbors an independent risk allele for essential tremor. CONCLUSIONS: Multiple PD risk alleles may also modify clinical manifestations to influence PD motor subtype. The discovery of a novel variant at STK32B suggests a possible overlap between genetic risk for essential tremor and tremor-dominant PD.

4.
Parkinsonism Relat Disord ; 84: 105-111, 2021 03.
Article in English | MEDLINE | ID: mdl-33607526

ABSTRACT

INTRODUCTION: Emerging technologies show promise for enhanced characterization of Parkinson's Disease (PD) motor manifestations. We evaluated quantitative mobility measures from a wearable device compared to the conventional motor assessment, the Movement Disorders Society-Unified PD Rating Scale part III (motor MDS-UPDRS). METHODS: We evaluated 176 PD subjects (mean age 65, 65% male, 66% H&Y stage 2) during routine clinic visits using the motor MDS-UPDRS and a 10-min motor protocol with a body-fixed sensor (DynaPort MT, McRoberts BV), including the 32-ft walk, Timed Up and Go (TUG), and standing posture with eyes closed. Regression models examined 12 quantitative mobility measures for associations with (i) motor MDS-UPDRS, (ii) motor subtype (tremor dominant vs. postural instability/gait difficulty), (iii) Montreal Cognitive Assessment (MoCA), and (iv) physical functioning disability (PROMIS-29). All analyses included age, gender, and disease duration as covariates. Models iii-iv were secondarily adjusted for motor MDS-UPDRS. RESULTS: Quantitative mobility measures from gait, TUG transitions, turning, and posture were significantly associated with motor MDS-UPDRS (7 of 12 measures, p < 0.05) and motor subtype (6 of 12 measures, p < 0.05). Compared with motor MDS-UPDRS, several quantitative mobility measures accounted for a 1.5- or 1.9-fold increased variance in either cognition or physical functioning disability, respectively. Among minimally-impaired subjects in the bottom quartile of motor MDS-UPDRS, including subjects with normal gait exam, the measures captured substantial residual motor heterogeneity. CONCLUSION: Clinic-based quantitative mobility assessments using a wearable sensor captured features of motor performance beyond those obtained with the motor MDS-UPDRS and may offer enhanced characterization of disease heterogeneity.


Subject(s)
Diagnostic Techniques, Neurological , Gait Disorders, Neurologic/diagnosis , Parkinson Disease/diagnosis , Postural Balance , Tremor/diagnosis , Wearable Electronic Devices , Aged , Diagnostic Techniques, Neurological/instrumentation , Female , Gait Disorders, Neurologic/etiology , Humans , Male , Middle Aged , Parkinson Disease/complications , Postural Balance/physiology , Severity of Illness Index , Tremor/etiology
5.
Neurol Genet ; 6(5): e498, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32802956

ABSTRACT

OBJECTIVE: To determine how single nucleotide variants (SNVs) and copy number variants (CNVs) contribute to molecular diagnosis in familial Parkinson disease (PD), we integrated exome sequencing (ES) and genome-wide array-based comparative genomic hybridization (aCGH) and further probed CNV structure to reveal mutational mechanisms. METHODS: We performed ES on 110 subjects with PD and a positive family history; 99 subjects were also evaluated using genome-wide aCGH. We interrogated ES and aCGH data for pathogenic SNVs and CNVs at Mendelian PD gene loci. We confirmed SNVs via Sanger sequencing and further characterized CNVs with custom-designed high-density aCGH, droplet digital PCR, and breakpoint sequencing. RESULTS: Using ES, we discovered individuals with known pathogenic SNVs in GBA (p.Glu365Lys, p.Thr408Met, p.Asn409Ser, and p.Leu483Pro) and LRRK2 (p.Arg1441Gly and p.Gly2019Ser). Two subjects were each double heterozygotes for variants in GBA and LRRK2. Based on aCGH, we additionally discovered cases with an SNCA duplication and heterozygous intragenic GBA deletion. Five additional subjects harbored both SNVs (p.Asn52Metfs*29, p.Thr240Met, p.Pro437Leu, and p.Trp453*) and likely disrupting CNVs at the PRKN locus, consistent with compound heterozygosity. In nearly all cases, breakpoint sequencing revealed microhomology, a mutational signature consistent with CNV formation due to DNA replication errors. CONCLUSIONS: Integrated ES and aCGH yielded a genetic diagnosis in 19.3% of our familial PD cohort. Our analyses highlight potential mechanisms for SNCA and PRKN CNV formation, uncover multilocus pathogenic variation, and identify novel SNVs and CNVs for further investigation as potential PD risk alleles.

SELECTION OF CITATIONS
SEARCH DETAIL
...