Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 39(1): 24, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38194210

ABSTRACT

Physical factors and tissue characteristics determine the transmission of light through tissues. One of the significant clinical limitations of photobiomodulation is the quantification of fluence delivered at application sites and optical penetration depth in vivo. There is also the difficulty of determining the distances of the application points to cover a uniformly irradiated area. Thus, the aim was to evaluate in vivo the influence of melanin on light transmission of the 660 nm and 830 nm laser wavelengths on skin and tendon. Thirty young individuals of both sexes were recruited, divided into two groups based on melanin index, and submitted to photobiomodulation protocols in the posterior region of the elbow (skin-skin) and the calcaneus tendon (skin-tendon-skin). The irradiation area was evaluated using a homemade linear array of five sensors. We found significant transmission power values for different melanin indexes and wavelengths (p<0.0001). Also, different equipment can generate significant differences in the transmitted power at an 830-nm wavelength. Average scattering values are 14 mm and 21 mm for 660 nm, in higher and lower melanin index, respectively. For 830 nm, values of 20 mm and 26 mm are indicated. Laser light transmission in vivo tissues is related to wavelength, beam diameter, tissue thickness, and composition, as well as melanin index. The 830-nm laser presents higher light transmission on the skin than 660 nm. The distances between the application points can be different, with higher values for 830 nm than 660 nm.


Subject(s)
Achilles Tendon , Calcaneus , Female , Male , Humans , Elbow , Melanins , Skin
2.
Lasers Med Sci ; 35(8): 1769-1779, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32078062

ABSTRACT

Analyze the effects of sequential application of photobiomodulation therapy (PBMT) at different wavelengths on the performance of cycling athletes. Cyclists (48 male, mean age 33.77 years) underwent a performance evaluation through an incremental test, VO2max, blood lactate analysis, perception of effort, infrared thermography, and isokinetic evaluations. Photobiomodulation (180 J) with infrared (IR 940 ± 10 nm), red (RED 620 ± 10 nm), mixed Red, and IR (RED/IR 620 + 940 nm) or Sham (disabled device) intervention occurred on three consecutive days and was applied to the quadriceps femoris bilaterally. Reevaluations were performed 24 h after the last application, with 1 week of follow-up. A significance level of 5% was adopted, and the effect size (ES) was calculated by Cohen's d. Results: There were no significant differences in the analyzed variables under any experimental condition (p > 0.005), but a moderate effect size was observed for torque peak at 60°/s on left lower limb (LLL) (ES = 0.67), average power at 60°/s of the right lower limb (RLL) (0.73), and LLL (ES = 0.65) and a considerable effect size in torque peak at 60°/s of the RLL (ES = 0.98) in the IR/RED group compared with sham 24 h after the last application. Moreover, a large effect size was observed for total time to exhaustion (ES = 1.98) and for VO2max (ES = 6.96), and a moderate effect size was seen for anaerobic threshold (ES = 0.62) in the IR/RED group compared with sham. Photobiomodulation, when not associated with training, was not able to produce a cumulative effect on the performance of cycling athletes. However, the association of two wavelengths seems to be better for increased performance. ClinicalTrials.gov Identifier: NCT03225976.


Subject(s)
Athletic Performance , Bicycling/physiology , Low-Level Light Therapy/instrumentation , Adult , Humans , Lactic Acid/blood , Lower Extremity/physiology , Lower Extremity/radiation effects , Male , Oxygen Consumption/radiation effects , Torque
SELECTION OF CITATIONS
SEARCH DETAIL
...