Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Inorg Chem ; 63(2): 1000-1009, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173271

ABSTRACT

Semihydrogenation of internal alkynes catalyzed by the air-stable imidazolyl amino [Mo3S4Cl3(ImNH2)3]+ cluster selectively affords the (Z)-alkene under soft conditions in excellent yields. Experimental results suggest a sulfur-based mechanism with the formation of a dithiolene adduct through interaction of the alkyne with the bridging sulfur atoms. However, computational studies indicate that this mechanism is unable to explain the experimental outcome: mild reaction conditions, excellent selectivity toward the (Z)-isomer, and complete deuteration of the vinylic positions in the presence of CD3OD and CH3OD. An alternative mechanism that explains the experimental results is proposed. The reaction begins with the hydrogenation of two of the Mo3(µ3-S)(µ-S)3 bridging sulfurs to yield a bis(hydrosulfide) intermediate that performs two sequential hydrogen atom transfers (HAT) from the S-H groups to the alkyne. The first HAT occurs with a spin change from singlet to triplet. After the second HAT, the singlet state is recovered. Although the dithiolene adduct is more stable than the hydrosulfide species, the large energy required for the subsequent H2 addition makes the system evolve via the second alternative pathway to selectively render the (Z)-alkene with a lower overall activation barrier.

2.
Dalton Trans ; 52(40): 14606-14612, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37786386

ABSTRACT

The reaction of three [FeII(TSC)2] complexes, where TSC is a pyridine-substituted thiosemicarbazone of the HDpT or HBpT families, with H2O2 in acetonitrile solution does not result in the accumulation of the corresponding [FeIII(TSC)2]+ complexes. Instead, a mixture of diamagnetic low-spin FeII species is generated. According to the MS spectra, those species result from the sequential addition of up to five oxygen atoms to the complex. This capability for the addition of oxygen atoms suggested that oxygen atom transfer to external substrates may be possible, and these TSC complexes were tested in the oxidation of thioanisole and styrene with H2O2. As hypothesized, the complexes are active in both the oxidation of thioanisole to its sulfoxide and styrene to benzaldehyde, with time scales indicating the participation of the species containing added oxygen atoms. Interestingly, the free thiosemicarbazone ligands and the [Zn(Dp44mT)2] complex also catalyse the selective sulfoxidation of thioanisole, but they are ineffective in catalysing styrene oxidation to benzaldehyde. These findings open up new directions for the development of thiosemicarbazone-based metal catalysts for oxidation processes.

3.
Inorg Chem ; 61(42): 16730-16739, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36239439

ABSTRACT

Formic acid (FA) dehydrogenation is an attractive process in the implementation of a hydrogen economy. To make this process greener and less costly, the interest nowadays is moving toward non-noble metal catalysts and additive-free protocols. Efficient protocols using earth abundant first row transition metals, mostly iron, have been developed, but other metals, such as molybdenum, remain practically unexplored. Herein, we present the transformation of FA to form H2 and CO2 through a cluster catalysis mechanism mediated by a cuboidal [Mo3S4H3(dmpe)3]+ hydride cluster in the absence of base or any other additive. Our catalyst has proved to be more active and selective than the other molybdenum compounds reported to date for this purpose. Kinetic studies, reaction monitoring, and isolation of the [Mo3S4(OCHO)3(dmpe)3]+ formate reaction intermediate, in combination with DFT calculations, have allowed us to formulate an unambiguous mechanism of FA dehydrogenation. Kinetic studies indicate that the reaction at temperatures up to 60 °C ends at the triformate complex and occurs in a single kinetic step, which can be interpreted in terms of statistical kinetics at the three metal centers. The process starts with the formation of a dihydrogen-bonded species with Mo-H···HOOCH bonds, detected by NMR techniques, followed by hydrogen release and formate coordination. Whereas this process is favored at temperatures up to 60 °C, the subsequent ß-hydride elimination that allows for the CO2 release and closes the catalytic cycle is only completed at higher temperatures. The cycle also operates starting from the [Mo3S4(OCHO)3(dmpe)3]+ formate intermediate, again with preservation of the cluster integrity, which adds our proposal to the list of the infrequent cluster catalysis reaction mechanisms.

4.
Chemistry ; 26(61): 13880-13889, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-32476172

ABSTRACT

The transition metal catalysed formation and cleavage of C-C bonds is of utmost importance in synthetic chemistry. While most of the existing homogeneous catalysts are mononuclear, knowledge of the behaviour of polynuclear species is much more limited. By using computational methods, here we shed light into the mechanistic details of the thermally-induced isomerization of Cp*3 Ru3 (µ-H)2 (µ3 -η2 -pentyne)(µ3 -pentylidyne) (2) into Cp*3 Ru3 (µ-H)2 (µ3 -η2 -octyne)(µ3 -ethylidyne) (3), a process that involves the migration of a C3 fragment between the hydrocarbyl ligands and across the plane formed by the three Ru centres. Our results show this to be a complex transformation that comprises of five individual rearrangements in an A→B→A→B→A order. Each so-called rearrangement A consists of the CH migration from the µ3 -η2 -alkyne into the µ3 -alkylidine ligand in the other side of the Ru3 plane. This process is facilitated by the cluster's ability to adopt open-core structures in which one Ru-Ru bond is broken and a new C-C bond is formed. In contrast, rearrangements B do not involve the formation or cleavage of C-C bonds, nor do they require the opening of the cluster core. Instead, they consist of the isomerization of the µ3 -η2 -alkyne and µ3 -alkylidyne ligands on each side of the triruthenium plane into µ3 -alkylidyne and µ3 -η2 -alkyne, respectively. Such transformation implies the migration of three H atoms within the hydrocarbyl ligands, and in this case, it is aided by the cluster's ability to behave as a H reservoir. All in all, this study highlights the plasticity of these Ru3 clusters, whereby Ru-Ru, Ru-C, Ru-H, C-C, and C-H bonds are formed and broken with surprising ease.

5.
Dalton Trans ; 48(44): 16578-16587, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31657430

ABSTRACT

The kinetics of oxidation of different biologically-active FeII bis-thiosemicarbazone complexes in water has been monitored at varying dioxygen concentration, temperature, pressure, and pH. The oxidation reactions observed can be resolved as a single-step process, producing the expected ferric complex, with rates increasing with decreasing pH. From the pH-dependence of the observed rate constants, a rate law with two terms can be derived, one of them being independent of the acid concentration and the other term showing a saturation behaviour with respect to [H+]. These results indicate the existence of two parallel pathways for oxidation: the acid-independent pathway is only operative for the complexes with ligands bearing terminal, non-coordinated, unsubstituted amines, whereas the term with a [H+]-limiting kinetic behaviour is observed for all the complexes and indicates that the reacting species has to be protonated prior to the oxidation step. From the data collected, the rate law and the thermal and pressure activation parameters have been used to interpret the operating reaction mechanisms. Given the fact that the empirical trends rule out an outer-sphere oxidation process, DFT calculations have been carried out to explain the results and suggest the likely formation, under steady-state very low concentration conditions, of FeIII superoxo and hydroperoxo intermediates.

6.
J Am Chem Soc ; 140(39): 12527-12537, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30185035

ABSTRACT

The host-guest binding properties of a water-soluble resorcinarene-based cavitand are examined using density functional theory methodology. Experimentally, the cavitand has been observed to self-assemble in aqueous solution into both 1:1 and 2:1 host/guest complexes with hydrophobic guests such as n-alkanes. For n-decane, equilibrium was observed between the 1:1 and 2:1 complexes, while 1:1 complexes are formed with shorter n-alkanes and 2:1 complexes are formed with longer ones. These findings are used to assess the standard quantum chemical methodology. It is first shown that a rather advanced computational protocol (B3LYP-D3(BJ)/6-311+G(2d,2p) with COSMO-RS and quasi-rigid-rotor-harmonic-oscillator) gives very large errors. Systematic examination of the various elements of the methodology shows that the error stems from the implicit solvation model. A mixed explicit-implicit solvation protocol is developed that involves a parametrization of the hydration free energy of water such that water cluster formation in water is predicted to be thermoneutral. This new approach is demonstrated to lead to a major improvement in the calculated binding free energies of n-alkanes, reproducing very well the 1:1 versus 2:1 host/guest binding trends.

7.
Inorg Chem ; 57(17): 10961-10973, 2018 Sep 04.
Article in English | MEDLINE | ID: mdl-30129755

ABSTRACT

A new tetraaza-pyridinophane macrocycle (L1) N-alkylated with two isopropyl and one methyl groups symmetrically disposed has been prepared and its behavior compared with those of the unsubstituted pyridinophane (L3) and the related compound with three methyl groups (L2). The protonation studies show that, first, a proton binds to the central methylated amine group of L1, while, second protonation leads to a reorganization of the protons that are at this stage attached to the lateral isopropylated amines. The X-ray structure of [HL1]+ agrees with the UV-vis and NMR studies as well as with the results of DFT calculations. The stability of the Cu2+ complexes decreases on increasing the bulkiness of the alkyl substituents of the amine groups. The crystal structures of [CuL1Cl](ClO4) and [CuL1(H2O)](ClO4)2·H2O show square pyramidal coordination geometries with the ligands disposed in a bent L-shaped conformation. Kinetic studies indicate that the rates of both complexation and ligand dissociation decrease with the bulkiness of the substituents, so that the stability changes are surely the results of compensating effects, complex formation dominating over complex dissociation. The pH dependence of the rate constants for complex formation cannot be explained by consideration of rapid pre-equilibria involving the different protonated forms of the ligand, and it has been interpreted in terms of a mechanism involving an acid-base equilibrium for a reaction intermediate. NBT SOD studies show that the Cu2+ complex of the bulkiest L1 ligand is the one having the highest activity (IC50 = 0.26(5) µM, kcat = 13.7 × 106 M-1 s-1) which can be associated with the poorer σ-donor ability of the tertiary amino groups, and the rigidity of the system, caused by the bulky isopropyl groups.


Subject(s)
Copper/chemistry , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Superoxide Dismutase/metabolism , Alkylating Agents/chemistry , Computer Simulation , Hydrogen-Ion Concentration , Ions , Kinetics , Ligands , Molecular Conformation , X-Ray Diffraction
8.
J Comput Chem ; 38(22): 1966-1973, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28573687

ABSTRACT

An unusual pericyclic process that involves the intermolecular transfer of thiozone (S3 ) is computationally described. The process can be considered as a special case of double group transfer reaction whereby the two migrating groups are connected to the same substituent, taking place in a concerted manner via transition states featuring two five-membered C2 S3 rings fused together. Analysis of the aromaticity at the TS geometries by computing NICS values at the (3,+1) RCPS as well as ACID calculations confirms the aromatic character of each C2 S3 ring, thus resulting in bicyclically delocalized aromatic structures. The free energy barriers for the transfer of S3 are relatively similar (40-50 kcal mol-1 ) to those computed for typical double H group transfer reactions. The similarities and differences between these processes have been further analysed by applying ASM-EDA and NBO approaches to the model reactions between ethene and ethane, and ethene and 1,2,3-trithiolane. © 2017 Wiley Periodicals, Inc.

9.
J Am Chem Soc ; 139(6): 2286-2295, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28102675

ABSTRACT

The mechanism of the zirconium-catalyzed condensation of carboxylic acids and amines for direct formation of amides was studied using kinetics, NMR spectroscopy, and DFT calculations. The reaction is found to be first order with respect to the catalyst and has a positive rate dependence on amine concentration. A negative rate dependence on carboxylic acid concentration is observed along with S-shaped kinetic profiles under certain conditions, which is consistent with the formation of reversible off-cycle species. Kinetic experiments using reaction progress kinetic analysis protocols demonstrate that inhibition of the catalyst by the amide product can be avoided using a high amine concentration. These insights led to the design of a reaction protocol with improved yields and a decrease in catalyst loading. NMR spectroscopy provides important details of the nature of the zirconium catalyst and serves as the starting point for a theoretical study of the catalytic cycle using DFT calculations. These studies indicate that a dinuclear zirconium species can catalyze the reaction with feasible energy barriers. The amine is proposed to perform a nucleophilic attack at a terminal η2-carboxylate ligand of the zirconium catalyst, followed by a C-O bond cleavage step, with an intermediate proton transfer from nitrogen to oxygen facilitated by an additional equivalent of amine. In addition, the DFT calculations reproduce experimentally observed effects on reaction rate, induced by electronically different substituents on the carboxylic acid.

10.
J Org Chem ; 82(4): 2160-2170, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28107005

ABSTRACT

The hydrolytic degradation of squaramides and squaramic acids, the product of partial hydrolysis of squaramides, has been evaluated by UV spectroscopy at 37 °C in the pH range 3-10. Under these conditions, the compounds are kinetically stable over long time periods (>100 days). At pH >10, the hydrolysis of the squaramate anions shows first-order dependence on both squaramate and OH-. At the same temperature and [OH-], the hydrolysis of squaramides usually displays biphasic spectral changes (A → B → C kinetic model) with formation of squaramates as detectable reaction intermediates. The measured rates for the first step (k1 ≈ 10-4 M-1 s-1) are 2-3 orders of magnitude faster than those for the second step (k2 ≈ 10-6 M-1 s-1). Experiments at different temperatures provide activation parameters with values of ΔH⧧ ≈ 9-18 kcal mol-1 and ΔS⧧ ≈ -5 to -30 cal K-1 mol-1. DFT calculations show that the mechanism for the alkaline hydrolysis of squaramic acids is quite similar to that of amides.

11.
Inorg Chem ; 56(1): 186-196, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27976874

ABSTRACT

The complex Ir2S2(PPh3)4 (1) is known to react with 1 and 2 equivalents of H2 leading to [Ir(H)(PPh3)2]2(µ-S)2 (2) and Ir2(µ-S)(µ-SH)(µ-H)H2(PPh3)4 (4), respectively ( Linck , R. C. ; Pafford , R. J. ; Rauchfuss , T. B. J. Am. Chem. Soc. 2001 , 123 , 8856 - 8857 ). Herein, the results of a thorough computational (DFT) study of these formally homo- and heterolytic H2 activation processes, respectively, are presented. These indicate that 2 is formed in a two-step process whereby the oxidative addition of H2 at a single IrII center of 1 generates an intermediate (A) that rearranges into 2 by means of a facile H migration to the neighboring Ir center. Activation of the second equivalent of H2 most likely occurs at the bridging sulfur ligands of 2 leading to a reaction intermediate (3aa) that features two (µ-SH) ligands. Intermediate 3aa present two isomers that differ only on the stereochemistry of the (µ-SH) ligands, and both of them can further evolve into 4 via H migration from (µ-SH) to bridging (µ-H). Nevertheless, an alternative mechanism based on the initial isomerization of 2 into A, and followed by H2 coordination and activation steps at a single Ir center cannot be completely ruled out. In general, the results herein show that the mechanisms for the activation of H2 at 1 and 2 involve facile H migration processes, in agreement with the experimentally observed intermetallic hydride exchange in 2 and the exchange between IrH and SH centers in 4, which proceed with computed free energy barriers of ca. 19-23 kcal mol-1.

12.
Inorg Chem ; 55(19): 9912-9922, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27673370

ABSTRACT

Treatment of the triangular [Mo3S4Cl3(dbbpy)3]Cl cluster ([1]Cl) with CuCl produces a novel tetrametallic cuboidal cluster [Mo3(CuCl)S4Cl3(dbbpy)3][CuCl2] ([2][CuCl2]), whose crystal structure was determined by X-ray diffraction (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine). This species, which contains two distinct types of Cu(I), is the first example of a diimine-functionalized heterometallic M3M'S4 cluster. Kinetics studies on both the formation of the cubane from the parent trinuclear cluster and its dissociation after treatment with halides, supported by NMR, electrospray ionization mass spectrometry, cyclic voltammetry, and density functional theory calculations, are provided. On the one hand, the results indicate that addition of Cu(I) to [1]+ is so fast that its kinetics can be monitored only by cryo-stopped flow at -85 °C. On the other hand, the release of the CuCl unit in [2]+ is also a fast process, which is unexpectedly assisted by the CuCl2- counteranion in a process triggered by halide (X-) anions. The whole set of results provide a detailed picture of the assembly-disassembly processes in this kind of cluster. Interconversion between trinuclear M3S4 clusters and their heterometallic M3M'S4 derivatives can be a fast process occurring readily under the conditions employed during reactivity and catalytic studies, so their occurrence is a possibility that must be taken into account in future studies.

13.
Chemistry ; 21(42): 14823-33, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26383190

ABSTRACT

Whereas the cluster [Mo3 S4 (acac)3 (py)3 ](+) ([1](+) , acac=acetylacetonate, py=pyridine) reacts with a variety of alkynes, the cluster [W3 S4 (acac)3 (py)3 ](+) ([2](+) ) remains unaffected under the same conditions. The reactions of cluster [1](+) show polyphasic kinetics, and in all cases clusters bearing a bridging dithiolene moiety are formed in the first step through the concerted [3+2] cycloaddition between the C≡C atoms of the alkyne and a Mo(µ-S)2 moiety of the cluster. A computational study has been conducted to analyze the effect of the metal on these concerted [3+2] cycloaddition reactions. The calculations suggest that the reactions of cluster [2](+) with alkynes feature ΔG(≠) values only slightly larger than its molybdenum analogue, however, the differences in the reaction free energies between both metal clusters and the same alkyne reach up to approximately 10 kcal mol(-1) , therefore indicating that the differences in the reactivity are essentially thermodynamic. The activation strain model (ASM) has been used to get more insights into the critical effect of the metal center in these cycloadditions, and the results reveal that the change in reactivity is entirely explained on the basis of the differences in the interaction energies Eint between the cluster and the alkyne. Further decomposition of the Eint values through the localized molecular orbital-energy decomposition analysis (LMO-EDA) indicates that substitution of the Mo atoms in cluster [1](+) by W induces changes in the electronic structure of the cluster that result in weaker intra- and inter-fragment orbital interactions.

14.
Chemistry ; 21(7): 3087-96, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25521823

ABSTRACT

Detailed experimental and computational studies have been carried out on the oxidative coupling of the alkenes C2 H3 Y (Y=CO2 Me (a), Ph (b), C(O)Me (c)) with 3-aryl-5-R-pyrazoles (R=Me (1 a), Ph (1 b), CF3 (1 c)) using a [Rh(MeCN)3 Cp*][PF6 ]2 /Cu(OAc)2 ⋅H2 O catalyst system. In the reaction of methyl acrylate with 1 a, up to five products (2 aa-6 aa) were formed, including the trans monovinyl product, either complexed within a novel Cu(I) dimer (2 aa) or as the free species (3 aa), and a divinyl species (6 aa); both 3 aa and 6 aa underwent cyclisation by an aza-Michael reaction to give fused heterocycles 4 aa and 5 aa, respectively. With styrene, only trans mono- and divinylation products were observed, whereas with methyl vinyl ketone, a stronger Michael acceptor, only cyclised oxidative coupling products were formed. Density functional theory calculations were performed to characterise the different migratory insertion and ß-H transfer steps implicated in the reactions of 1 a with methyl acrylate and styrene. The calculations showed a clear kinetic preference for 2,1-insertion and the formation of trans vinyl products, consistent with the experimental results.

15.
Chemistry ; 21(7): 2835-44, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25529428

ABSTRACT

A study, involving kinetic measurements on the stopped-flow and conventional UV/Vis timescales, ESI-MS, NMR spectroscopy and DFT calculations, has been carried out to understand the mechanism of the reaction of [Mo3 S4 (acac)3 (py)3 ][PF6 ] ([1]PF6 ; acac=acetylacetonate, py=pyridine) with two RCCR alkynes (R=CH2 OH (btd), COOH (adc)) in CH3 CN. Both reactions show polyphasic kinetics, but experimental and computational data indicate that alkyne activation occurs in a single kinetic step through a concerted mechanism similar to that of organic [3+2] cycloaddition reactions, in this case through the interaction with one Mo(µ-S)2 moiety of [1](+) . The rate of this step is three orders of magnitude faster for adc than that for btd, and the products initially formed evolve in subsequent steps into compounds that result from substitution of py ligands or from reorganization to give species with different structures. Activation strain analysis of the [3+2] cycloaddition step reveals that the deformation of the two reactants has a small contribution to the difference in the computed activation barriers, which is mainly associated with the change in the extent of their interaction at the transition-state structures. Subsequent frontier molecular orbital analysis shows that the carboxylic acid substituents on adc stabilize its HOMO and LUMO orbitals with respect to those on btd due to better electron-withdrawing properties. As a result, the frontier molecular orbitals of the cluster and alkyne become closer in energy; this allows a stronger interaction.


Subject(s)
Alkynes/chemistry , Magnetic Resonance Spectroscopy/methods , Cycloaddition Reaction , Kinetics , Models, Molecular
16.
J Org Chem ; 79(5): 1954-70, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24564771

ABSTRACT

Detailed experimental and computational studies are reported on the mechanism of the coupling of alkynes with 3-arylpyrazoles at [Rh(MeCN)3Cp*][PF6]2 and [RuCl2(p-cymene)]2 catalysts. Density functional theory (DFT) calculations indicate a mechanism involving sequential N-H and C-H bond activation, HOAc/alkyne exchange, migratory insertion, and C-N reductive coupling. For rhodium, C-H bond activation is a two-step process comprising κ(2)-κ(1) displacement of acetate to give an agostic intermediate which then undergoes C-H bond cleavage via proton transfer to acetate. For the reaction of 3-phenyl-5-methylpyrazole with 4-octyne k(H)/k(D) = 2.7 ± 0.5 indicating that C-H bond cleavage is rate limiting in this case. However, H/D exchange studies, both with and without added alkyne, suggest that the migratory insertion transition state is close in energy to that for C-H bond cleavage. In order to model this result correctly, the DFT calculations must employ the full experimental system and include a treatment of dispersion effects. A significantly higher overall barrier to catalysis is computed at {Ru(p-cymene)} for which the rate-limiting process remains C-H activation. However, this is now a one-step process corresponding to the κ(2)-κ(1) displacement of acetate and so is still consistent with the lack of a significant experimental isotope effect (k(H)/k(D) = 1.1 ± 0.2).

17.
Inorg Chem ; 53(1): 512-21, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24350761

ABSTRACT

The macrobicyclic mixed-donor N3S3 cage ligand AMME-N3S3sar (1-methyl-8-amino-3,13,16-trithia-6,10,19-triazabicyclo[6.6.6]eicosane) can form complexes with Cu(II) in which it acts as hexadentate (N3S3) or tetradentate (N2S2) donor. These two complexes are in equilibrium that is strongly influenced by the presence of halide ions (Br(-) and Cl(-)) and the nature of the solvent (DMSO, MeCN, and H2O). In the absence of halides the hexadentate coordination mode of the ligand is preferred and the encapsulated complex ("Cu-in(2+)") is formed. Addition of halide ions in organic solvents (DMSO or MeCN) leads to the tetradentate complex ("Cu-out(+)") in a polyphasic kinetic process, but no Cu-out(+) complex is formed when the reaction is performed in water. Here we applied density functional theory calculations to study the mechanism of this interconversion as well as to understand the changes in the reactivity associated with the presence of water. Calculations were performed at the B3LYP/(SDD,6-31G**) level, in combination with continuum (MeCN) or discrete-continuum (H2O) solvent models. Our results show that formation of Cu-out(+) in organic media is exergonic and involves sequential halide-catalyzed inversion of the configuration of a N-donor of the macrocycle, rapid halide coordination, and inversion of the configuration of a S-donor. In aqueous solution the solvent is found to have an effect on both the thermodynamics and the kinetics of the reaction. Thermodynamically, the process becomes endergonic mainly due to the preferential solvation of halide ions by water, while the kinetics is influenced by formation of a network of H-bonded water molecules that surrounds the complex.

18.
Dalton Trans ; 43(29): 11118-28, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24296549

ABSTRACT

A combined experimental and computational study on the fluxional processes involving the M-H and B-H positions in the sigma amine-borane complexes [M(PR3)2(H)2(η(2)-H3B·NMe3)][BAr(F)4] (M = Rh, Ir; R = Cy for experiment; R = Me, Cy for computation; Ar(F) = 3,5-(CF3)2C6H3) is reported. The processes studied are: B-H bridging/terminal exchange; reaction with exogenous D2 leading to exchange at M-H; and intramolecular M-H/B-H exchange. Experimentally it was found that B-H bridging/terminal exchange is most accessible and slightly favoured for Rh; D2/M-H exchange occurs at qualitatively similar rates for both M = Rh and Ir, while M-H/B-H exchange is the slowest overall, with the Ir congener having a lower barrier than Rh. Evidence for the isotopic perturbation of equilibrium is also reported for the BH/BD isotopologues of [Ir(PCy3)2(H)2(η(2)-H3B·NMe3)][BAr(F)4]. DFT calculations using model complexes (R = Me) qualitatively reproduce the relative rates of the various exchange processes for both M = Rh and Ir, i.e. barriers for B-H bridging/terminal exchange are less than those for M-H/H2 exchange, which in turn are less than those for M-H/B-H exchange. Which metal promotes these processes more effectively depends upon the nature of the rate-limiting transition state, which can change between Rh and Ir. Computational analysis of the full experimental system (R = Cy) reveals similar overall trends in terms of the relative ease of the various exchange processes. However, there are differences in the details, and these are discussed.

19.
Inorg Chem ; 52(24): 14334-42, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24266451

ABSTRACT

Reaction of [Mo3(µ3-S)(µ-S)3] clusters with alkynes usually leads to formation of two C-S bonds between the alkyne and two of the bridging sulfides. The resulting compounds contain a bridging alkenedithiolate ligand, and the metal centers appear to play a passive role despite reactions at those sites being well illustrated for this kind of cluster. A detailed study including kinetic measurements and DFT calculations has been carried out to understand the mechanism of reaction of the [Mo3(µ3-S)(µ-S)3(H2O)9](4+) (1) cluster with two different alkynes, 2-butyne-1,4-diol and acetylenedicarboxylic acid. Stopped-flow experiments indicate that the reaction involves the appearance in a single kinetic step of a band at 855 or 875 nm, depending on the alkyne used, a position typical of clusters with two C-S bonds. The effects of the concentrations of the reagents, the acidity, and the reaction medium on the rate of reaction have been analyzed. DFT and TD-DFT calculations provide information on the nature of the product formed, its electronic spectrum and the energy profile for the reaction. The structure of the transition state indicates that the alkyne approaches the cluster in a lateral way and both C-S bonds are formed simultaneously.


Subject(s)
Alkynes/chemistry , Coordination Complexes/chemistry , Disulfides/chemistry , Models, Molecular , Molybdenum/chemistry , Quantum Theory , Sulfides/chemistry , Kinetics
20.
J Am Chem Soc ; 135(37): 13640-3, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-23971827

ABSTRACT

The two-coordinate cationic Ni(I) bis-N-heterocyclic carbene complex [Ni(6-Mes)2]Br (1) [6-Mes =1,3-bis(2,4,6-trimethylphenyl)-3,4,5,6-tetrahydropyrimidin-2-ylidene] has been structurally characterized and displays a highly linear geometry with a C-Ni-C angle of 179.27(13)°. Density functional theory calculations revealed that the five occupied metal-based orbitals are split in an approximate 2:1:2 pattern. Significant magnetic anisotropy results from this orbital degeneracy, leading to single-ion magnet (SIM) behavior.

SELECTION OF CITATIONS
SEARCH DETAIL