Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Microorganisms ; 12(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38674759

ABSTRACT

Extended reality (XR) devices, including virtual and augmented reality head-mounted displays (HMDs), are increasingly utilised within healthcare to provide clinical interventions and education. Currently, XR devices are utilised to assist in reducing pain and improving psychological outcomes for immunocompromised patients in intensive care units, palliative care environments and surgical theatres. However, there is a paucity of research on the risks of infection from such devices in healthcare settings. Identify existing literature providing insights into the infection control risk XR HMDs pose within healthcare facilities and the efficacy of current infection control and cleaning procedures. Three databases (PubMed, Embase and CINAHL) in addition to Google Scholar were systematically searched. A total of seven studies were identified for this review. Microorganisms, including pathogenic bacteria (e.g., Staphylococcus aureus and Pseudomonas aeruginosa), were found to be present on XR HMDs. Published cleaning and infection control protocols designed to disinfect XR HMDs and protect users were heterogeneous in nature. Current cleaning protocols displayed varying levels of efficacy with microbial load affected by multiple factors, including time in use, number of users and XR HMD design features. In healthcare settings, fitting XR HMDs harbouring microorganisms near biological and mucosal entry points presents an infection control risk. An urgent revision of the Spaulding classification is required to ensure flexibility that allows for these devices to be reclassified from 'Non-critical' to 'Semi-Critical' depending on the healthcare setting and patient population (surgery, immunocompromised, burns, etc.). This review identified evidence supporting the presence of microorganisms on XR HMDs. Due to the potential for HMDs to contact mucosal entry points, devices must be re-considered within the Spaulding classification as 'Semi-critical'. The existence of microbial contaminated XR HMDs in high-risk medical settings such as operating wards, intensive care units, emergency departments, labour and delivery wards and clinical areas with immunosuppressed patients requires urgent attention. Public health authorities have a duty of care to develop revised guidelines or new recommendations to ensure efficient sanitation of such devices.

2.
Forensic Sci Int Genet ; 69: 102999, 2024 03.
Article in English | MEDLINE | ID: mdl-38181588

ABSTRACT

The Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) organized a collaborative study on mutations of Y-chromosomal short tandem repeats (Y-STRs). New data from 2225 father-son duos and data from 44 previously published reports, corresponding to 25,729 duos, were collected and analyzed. Marker-specific mutation rates were estimated for 33 Y-STRs. Although highly dependent on the analyzed marker, mutations compatible with the gain or loss of a single repeat were 23.2 times more likely than those involving a greater number of repeats. Longer alleles (relatively to the modal one) showed to be nearly twice more mutable than the shorter ones. Within the subset of longer alleles, the loss of repeats showed to be nearly twice more likely than the gain. Conversely, shorter alleles showed a symmetrical trend, with repeat gains being twofold more frequent than reductions. A positive correlation between the paternal age and the mutation rate was observed, strengthening previous findings. The results of a machine learning approach, via logistic regression analyses, allowed the establishment of algebraic formulas for estimating the probability of mutation depending on paternal age and allele length for DYS389I, DYS393 and DYS627. Algebraic formulas could also be established considering only the allele length as predictor for DYS19, DYS389I, DYS389II-I, DYS390, DYS391, DYS393, DYS437, DYS439, DYS449, DYS456, DYS458, DYS460, DYS481, DYS518, DYS533, DYS576, DYS626 and DYS627 loci. For the remaining Y-STRs, a lack of statistical significance was observed, probably as a consequence of the small effective size of the subsets available, a common difficulty in the modeling of rare events as is the case of mutations. The amount of data used in the different analyses varied widely, depending on how the data were reported in the publications analyzed. This shows a regrettable waste of produced data, due to inadequate communication of the results, supporting an urgent need of publication guidelines for mutation studies.


Subject(s)
Chromosomes, Human, Y , DNA Fingerprinting , Humans , Microsatellite Repeats , Ethnicity/genetics , Mutation , Haplotypes , Genetics, Population
3.
Appl Environ Microbiol ; 90(1): e0142823, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38099657

ABSTRACT

Wastewater-based epidemiology (WBE) expanded rapidly in response to the COVID-19 pandemic. As the public health emergency has ended, researchers and practitioners are looking to shift the focus of existing wastewater surveillance programs to other targets, including bacteria. Bacterial targets may pose some unique challenges for WBE applications. To explore the current state of the field, the National Science Foundation-funded Research Coordination Network (RCN) on Wastewater Based Epidemiology for SARS-CoV-2 and Emerging Public Health Threats held a workshop in April 2023 to discuss the challenges and needs for wastewater bacterial surveillance. The targets and methods used in existing programs were diverse, with twelve different targets and nine different methods listed. Discussions during the workshop highlighted the challenges in adapting existing programs and identified research gaps in four key areas: choosing new targets, relating bacterial wastewater data to human disease incidence and prevalence, developing methods, and normalizing results. To help with these challenges and research gaps, the authors identified steps the larger community can take to improve bacteria wastewater surveillance. This includes developing data reporting standards and method optimization and validation for bacterial programs. Additionally, more work is needed to understand shedding patterns for potential bacterial targets to better relate wastewater data to human infections. Wastewater surveillance for bacteria can help provide insight into the underlying prevalence in communities, but much work is needed to establish these methods.IMPORTANCEWastewater surveillance was a useful tool to elucidate the burden and spread of SARS-CoV-2 during the pandemic. Public health officials and researchers are interested in expanding these surveillance programs to include bacterial targets, but many questions remain. The NSF-funded Research Coordination Network for Wastewater Surveillance of SARS-CoV-2 and Emerging Public Health Threats held a workshop to identify barriers and research gaps to implementing bacterial wastewater surveillance programs.


Subject(s)
Goals , Pandemics , Humans , Wastewater , Wastewater-Based Epidemiological Monitoring , Bacteria , SARS-CoV-2
4.
J Infect Public Health ; 16(11): 1750-1760, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37738691

ABSTRACT

BACKGROUND: Mobile phones, used in billions throughout the world, are high-touch devices subject to a dynamic contamination of microorganisms and rarely considered as an important fomite to sanitise systematically. The emergence of SARS-CoV-2 resulted in the COVID-19 pandemic, arguably the most impactful pandemic of the 21st century with millions of deaths and disruption of all facets of modern life globally. AIM: To perform a systematic review of the literature exploring SARS-CoV-2 presence as a contaminant on mobile phones. METHODS: A systematic search (PubMed and Google Scholar) of literature was undertaken from December 2019 to March 2023 identifying English language studies. Studies included in this review specifically identified or tested for the contamination of the SARS-CoV-2 virus or genome on mobile phones while studies testing for SARS-COV-2 in environments and/or other fomites samples than but not mobile phones were excluded. RESULTS: A total of 15 studies with reports of SARS-CoV-2 contamination on mobile phones between 2020 and 2023 were included. Amongst all studies, which encompassed ten countries, 511 mobile phones were evaluated for the presence of SARS-CoV-2 contamination and 45% (231/511) were positive for SARS-CoV-2. All studies were conducted in the hospital setting and two studies performed additional testing in residential isolation rooms and a patient's house. Four studies (3 in 2020 and one in 2021) reported 0% contamination while two other studies (in 2020 and 2022) reported 100% of mobile phone contamination with SARS-COV-2. All other studies report mobile phones positive for the virus within a range of 4-77%. CONCLUSION: A total of 45% of mobile phones are contaminated with SARS-CoV-2 virus. These devices might be an important fomite vector for viral dissemination worldwide. Competent health authorities are advised/recommended to start a global implementation of mobile phone decontamination by introducing regulations and protocols in public health and health care settings such as the 6th moment of hand washing.

5.
Microorganisms ; 11(8)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37630437

ABSTRACT

INTRODUCTION: Mobile phones act as fomites that pose a global public health risk of disseminating microorganisms, including highly pathogenic strains possessing antimicrobial resistances. The use of ultraviolet-C (UV-C) to sanitise mobile phones presents an alternative means to complement basic hand hygiene to prevent the cross-contamination and dissemination of microorganisms between hands and mobile phones. AIM: This study aimed to evaluate the germicidal efficacy of the Glissner CleanPhone UV-C phone sanitiser (Glissner) device. METHODS: Two experimental trials were performed for the evaluation of the CleanPhone (Glissner). The first was a controlled trial, where the germicidal efficacy of the CleanPhone was evaluated against six different microorganism species that were inoculated onto mobile phones. The second was a field trial evaluating the germicidal efficacy of the CleanPhone on 100 volunteer mobile phones. Efficacy was determined based on colony counts of microorganisms on Columbia sheep blood agar before and after UV-C treatment. RESULTS: In the controlled trial, reduction in growth was observed for all microorganisms after UV-C treatment with ST131 Escherichia coli showing the highest growth reduction at 4 log10 CFU/mL followed by C. albicans and ATCC E. coli at 3 log10 CFU/mL. An overall reduction in microorganism growth after UV-C treatment was also observed for the field trial, with an average growth reduction of 84.4% and 93.6% in colony counts at 24 h and 48 h post-incubation, respectively. CONCLUSION: The findings demonstrated the capability of the CleanPhone (Glissner) to rapidly sanitise mobile phones, thereby providing a means to reduce the potential dissemination of microorganisms, including highly pathogenic strains with antimicrobial resistance.

6.
Infect Dis Health ; 28(1): 19-26, 2023 02.
Article in English | MEDLINE | ID: mdl-35995707

ABSTRACT

BACKGROUNDS: In 2022, smartphone use continues to expand with the number of smartphone subscriptions surpassing 6 billion and forecasted to grow to 7.5 billion by 2026. The necessity of these 'high touch' devices as essential tools in professional healthcare settings carries great risks of cross-contamination between mobile phones and hands. Current research emphasises mobile phones as fomites enhancing the risk of nosocomial disease dissemination as phone sanitisation is often overlooked. To assess and report via a large-scale E-survey the handling practices and the use of phones by healthcare workers. METHODS: A total of 377 healthcare workers (HCWs) participated in this study to fill in an E-survey online consisting of 14 questions (including categorical, ordinal, and numerical data). Analysis of categorical data used non-parametric techniques such as Pearson's chi-squared test. RESULTS: During an 8-h shift, 92.8% (n/N = 350/377) use their phone at work with 84.6% (n/N = 319/377) considering mobile phones as an essential tool for their job. Almost all HCWs who participated in this survey believe their mobile phones could potentially harbour microorganisms (97.1%; n/N = 366/377). Fifty-seven respondents (15.1%) indicated that they use their phones while wearing gloves and 10.3% (n/N = 39/377) have never cleaned their phones. The majority of respondents (89.3%; n/N = 337/377) agreed that contaminated mobile phones could contribute to dissemination of SARS-CoV-2. CONCLUSION: Mobile phone use is now almost universal and indispensable in healthcare. Medical staff believe mobile phones can act as fomites with a potential risk for dissemination of microbes including SARS-COV-2. There is an urgent call for the incorporation of mobile phone sanitisation in infection prevention protocol. Studies on the use of ultraviolet-C based phone sanitation devices in health care settings are needed.


Subject(s)
COVID-19 , Cell Phone , Humans , Fomites , Cross-Sectional Studies , United Arab Emirates , SARS-CoV-2 , Health Personnel
7.
Infect Drug Resist ; 15: 5289-5299, 2022.
Article in English | MEDLINE | ID: mdl-36106052

ABSTRACT

Background: As high touch wearable devices, the potential for microbial contamination of smart watches is high. In this study, microbial contamination of smart watches of healthcare workers (HCWs) was assessed and compared to the individual's mobile phone and hands. Methods: This study was part of a larger point prevalence survey of microbial contamination of mobile phones of HCWs at the emergency unit of a tertiary care facility. Swabs from smart watches, mobile phones and hands were obtained from four HCWs with dual ownership of these digital devices. Bacterial culture was carried out for all samples and those from smart watches and mobile phones were further assessed using shotgun metagenomic sequencing. Results: Majority of the participants were females (n/N = 3/4; 75%). Although they all use their digital devices at work and believe that these devices could harbour microbes, cleaning in the preceding 24 hours was reported by one individual. Predominant organisms identified on bacterial culture were multidrug resistant Staphylococcus hominis and Staphylococcus epidermidis. At least one organism identified from the hands was also detected on all mobile phones and two smart watches. Shotgun metagenomics analysis demonstrated greater microbial number and diversity on mobile phones compared to smart watches. All devices had high signatures of Pseudomonas aeruginosa and associated bacteriophages and antibiotic resistance genes. Almost half of the antibiotic resistance genes (n/N = 35/75;46.6%) were present on all devices and majority were related to efflux pumps. Of the 201 virulence factor genes (VFG) identified, majority (n/N = 148/201;73%) were associated with P. aeruginosa with 96% (n/N = 142/148) present on smart watches and mobile phones. Conclusion: This first report on microbial contamination of smart watches using metagenomics next generation sequencing showed similar pattern of contamination with microbes, VFG and antibiotic resistance genes across digital devices. Further studies on microbial contamination of wearable digital devices are urgently needed.

8.
Electrophoresis ; 43(18-19): 1911-1919, 2022 10.
Article in English | MEDLINE | ID: mdl-35899438

ABSTRACT

This article details the development of a single multiplex system amplifying 26 rapidly mutating Y-STR markers. A sequenced allelic ladder, constructed for calling alleles of all loci, is introduced. The multiplex system shows the ability to address the limitations of Y-STRs commercial kits in differentiating closely related males. The multiplex performed well in the prevalidation tests and showed great potential to be used in forensic casework.


Subject(s)
Chromosomes, Human, Y , Microsatellite Repeats , Alleles , Chromosomes, Human, Y/genetics , DNA Fingerprinting , Forensic Medicine , Haplotypes , Humans , Male , Microsatellite Repeats/genetics
9.
Sci Rep ; 12(1): 10009, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705596

ABSTRACT

Advancements in technology and communication have revolutionised the twenty-first century with the introduction of mobile phones and smartphones. These phones are known to be platforms harbouring microbes with recent research shedding light on the abundance and broad spectrum of organisms they harbour. Mobile phone use in the community and in professional sectors including health care settings is a potential source of microbial dissemination. To identify the diversity of microbial genetic signature present on mobile phones owned by hospital medical staff. Twenty-six mobile phones of health care staff were swabbed. DNA extraction for downstream next generation sequencing shotgun metagenomic microbial profiling was performed. Survey questionnaires were handed to the staff to collect information on mobile phone usage and users' behaviours. Each of the 26 mobile phones of this study was contaminated with microbes with the detection of antibiotic resistance and virulent factors. Taken together the sum of microbes and genes added together across all 26 mobile phones totalised 11,163 organisms (5714 bacteria, 675 fungi, 93 protists, 228 viruses, 4453 bacteriophages) and 2096 genes coding for antibiotic resistance and virulent factors. The survey of medical staff showed that 46% (12/26) of the participants used their mobile phones in the bathroom. Mobile phones are vectors of microbes and can contribute to microbial dissemination and nosocomial diseases worldwide. As fomites, mobile phones that are not decontaminated may pose serious risks for public health and biosecurity.


Subject(s)
Cell Phone , Cross Infection , Biosecurity , Cross Infection/microbiology , Fomites/microbiology , Humans , Public Health
10.
Front Cell Infect Microbiol ; 12: 806077, 2022.
Article in English | MEDLINE | ID: mdl-35372113

ABSTRACT

Background: Mobile phones of healthcare workers (HCWs) can act as fomites in the dissemination of microbes. This study was carried out to investigate microbial contamination of mobile phones of HCWs and environmental samples from the hospital unit using a combination of phenotypic and molecular methods. Methods: This point prevalence survey was carried out at the Emergency unit of a tertiary care facility. The emergency unit has two zones, a general zone for non-COVID-19 patients and a dedicated COVID-19 zone for confirmed or suspected COVID-19 patients. Swabs were obtained from the mobile phones of HCWs in both zones for bacterial culture and shotgun metagenomic analysis. Metagenomic sequencing of pooled environmental swabs was conducted. RT-PCR for SARS-CoV-2 detection was carried out. Results: Bacteria contamination on culture was detected from 33 (94.2%) mobile phones with a preponderance of Staphylococcus epidermidis (n/N = 18/35), Staphylococcus hominis (n/N = 13/35), and Staphylococcus haemolyticus (n/N = 7/35). Two methicillin-sensitive and three methicillin-resistant Staphylococcus aureus, and one pan-drug-resistant carbapenemase producer Acinetobacter baumannii were detected. Shotgun metagenomic analysis showed high signature of Pseudomonas aeruginosa in mobile phone and environmental samples with preponderance of P. aeruginosa bacteriophages. Malassezia and Aspergillus spp. were the predominant fungi detected. Fourteen mobile phones and one environmental sample harbored protists. P. aeruginosa antimicrobial resistance genes mostly encoding for efflux pump systems were detected. The P. aeruginosa virulent factor genes detected were related to motility, adherence, aggregation, and biofilms. One mobile phone from the COVID-19 zone (n/N = 1/5; 20%) had positive SARS-CoV-2 detection while all other phone and environmental samples were negative. Conclusion: The findings demonstrate that mobile phones of HCWs are fomites for potentially pathogenic and highly drug-resistant microbes. The presence of these microbes on the mobile phones and hospital environmental surfaces is a concern as it poses a risk of pathogen transfer to patients and dissemination into the community.


Subject(s)
COVID-19 , Cell Phone , Methicillin-Resistant Staphylococcus aureus , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
11.
Sci Rep ; 11(1): 14102, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34239006

ABSTRACT

There is increasing attention focussed on the risks associated with mobile phones possibly serving as 'Trojan Horse' fomites for microbial transmission in healthcare settings. However, little is reported on the presence of microbes on community derived mobile phones which in 2021, numbered in the billions in circulation with majority being used on a daily basis. Identify viable microbial organisms swabbed from smartphones on a university campus. Entire surfaces of 5 mobile phones were swabbed and examined for their microbial content using pre-agar-based growths followed by downstream DNA metagenomic next-generation sequencing analysis. All phones were contaminated with viable microbes. 173 bacteria, 8 fungi, 8 protists, 53 bacteriophages, 317 virulence factor genes and 41 distinct antibiotic resistant genes were identified. While this research represents a pilot study, the snapshot metagenomic analysis of samples collected from the surface of mobile phones has revealed the presence of a large population of viable microbes and an array of antimicrobial resistant factors. With billions of phones in circulation, these devices might be responsible for the rise of community acquired infections. These pilot results highlight the importance of public health authorities considering mobile phones as 'Trojan Horse' devices for microbial transmission and ensure appropriate decontamination campaigns are implemented.


Subject(s)
Bacteria/genetics , Cell Phone , Fungi/genetics , Metagenomics , Bacteriophages/genetics , Biodiversity , Metagenome , Virulence Factors/metabolism
12.
Sci Rep ; 11(1): 12999, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155278

ABSTRACT

An ever-increasing number of medical staff use mobile phones as a work aid, yet this may pose nosocomial diseases. To assess and report via a survey the handling practices and the use of phones by paediatric wards healthcare workers. 165 paediatric healthcare workers and staff filled in a questionnaire consisting of 14 questions (including categorical, ordinal and numerical data). Analysis of categorical data used non-parametric techniques such as the Chi-squared test. Although 98% of respondents (165 in total) report that their phones may be contaminated, 56% have never cleaned their devices. Of the respondents that clean their devices, 10% (17/165) had done so with alcohol swabs or disinfectant within that day or week; and an additional 12% respondents (20/165) within that month. Of concern, 52% (86/165) of the respondents use their phones in the bathroom, emphasising the unhygienic environments in which mobile phones/smartphones are constantly used. Disinfecting phones is a practice that only a minority of healthcare workers undertake appropriately. Mobile phones, present in billions globally, are therefore Trojan Horses if contaminated with microbes and potentially contributing to the spread and propagation of micro-organisms as per the rapid spread of SARS-CoV-2 virus in the world.


Subject(s)
Bathroom Equipment/virology , COVID-19/prevention & control , Cell Phone/instrumentation , Cross Infection/prevention & control , Delivery of Health Care/methods , Disinfection/methods , Hospitals, Pediatric , Personnel, Hospital , SARS-CoV-2 , COVID-19/virology , Cross Infection/virology , Emergency Service, Hospital , Female , Hand Hygiene , Humans , Intensive Care Units, Neonatal , Male , Risk Factors , Self Report
13.
Travel Med Infect Dis ; 43: 102095, 2021.
Article in English | MEDLINE | ID: mdl-34116242

ABSTRACT

INTRODUCTION: Mobile phones are used the world over, including in healthcare settings. This study aimed to investigate the viable microbial colonisation of mobile phones used by healthcare personnel. METHODS: Swabs collected on the same day from 30 mobile phones belonging to healthcare workers from three separate paediatric wards of an Australian hospital were cultured on five types of agar plate, then colonies from each phone were pooled, extracted and sequenced by shotgun metagenomics. Questionnaires completed by staff whose phones were sampled assisted in the analysis and interpretation of results. RESULTS AND DISCUSSION: All phones sampled cultured viable bacteria. Overall, 399 bacterial operational taxonomic units were identified from 30 phones, with 1432 cumulative hits. Among these were 58 recognised human pathogenic and commensal bacteria (37 Gram-negative, 21 Gram-positive). The total number of virulence factor genes detected was 347, with 1258 cumulative hits. Antibiotic resistance genes (ARGs) were detected on all sampled phones and overall, 133 ARGs were detected with 520 cumulative hits. The most important classes of ARGs detected encoded resistance to beta-lactam, aminoglycoside and macrolide antibiotics and efflux pump mediated resistance mechanisms. CONCLUSION: Mobile phones carry viable bacterial pathogens and may act as fomites by contaminating the hands of their users and indirectly providing a transmission pathway for hospital-acquired infections and dissemination of antibiotic resistance. Further research is needed, but meanwhile adding touching mobile phones to the five moments of hand hygiene is a simple infection control strategy worth considering in hospital and community settings. Additionally, the implementation of practical and effective guidelines to decontaminate mobile phone devices would likely be beneficial to the hospital population and community at large.


Subject(s)
Cell Phone , Cross Infection , Australia , Child , Cross-Sectional Studies , Fomites , Humans
14.
Int J Legal Med ; 135(5): 1777-1784, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33818632

ABSTRACT

The Hazara population across Durand line has experienced extensive interaction with Central Asian and East Asian populations. Hazara individuals have typical Mongolian facial appearances and they called themselves descendants of Genghis Khan's army. The people who speak the Balochi language are called Baloch. Previously, a worldwide analysis of Y-chromosomal haplotype diversity for rapidly mutating (RM) Y-STRs and with PowerPlex Y23 System (Promega Corporation Madison, USA) kit was created with collaborative efforts, but Baloch and Hazara population from Pakistan and Hazara population from Afghanistan were missing. In the current study, Yfiler Plus PCR Amplification Kit loci were examined in 260 unrelated Hazara individuals from Afghanistan, 153 Hazara individuals, and 111 Balochi individuals from Baluchistan Pakistan. For the Hazara population from Afghanistan and Pakistan overall, 380 different haplotypes were observed on these 27 Y-STR loci, gene diversities ranged from 0.51288 (DYS389I) to 0.9257 (DYF387S1), and haplotype diversity was 0.9992. For the Baloch population, every individual was unique at 27 Y-STR loci; gene diversity ranged from 0.5718 (DYS460) to 0.9371(DYF387S1). Twelve haplotypes were shared between 178 individuals, while only two haplotypes among these twelve were shared between 87 individuals in Hazara populations. Rst and Fst pairwise genetic distance analyses, multidimensional scaling plot, neighbor-joining tree, linear discriminatory analysis, and median-joining network were performed, which shed light on the history of Hazara and Baloch populations. The results of our study showed that the Yfiler Plus PCR Amplification Kit marker set provided substantially stronger discriminatory power in the Baloch population of Pakistan and the Hazara population across the Durand line.


Subject(s)
Chromosomes, Human, Y , DNA Fingerprinting/methods , Ethnicity/genetics , Haplotypes , Microsatellite Repeats , Afghanistan/ethnology , Genetics, Population , Humans , Male , Pakistan/ethnology
15.
Sci Total Environ ; 760: 143350, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33143926

ABSTRACT

Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China and spread to more than 114 countries resulting in a pandemic, which was declared by the WHO in March 2020. Tracking the spread of the virus raised a main concern in every country. Many researches proved the presence of SARS-CoV-2 in stool samples of patients, where the genes of this virus gave a positive signal several days prior to the occurrence of symptoms. The fact of viral shedding in stools provides an advantage in utilizing wastewater systems as a tool to monitor the viral prevalence. We tested more than 2900 municipal wastewater samples coming from 49 distinctive area in Dubai, where 28.6% showed positive results. We also looked into the wastewater samples from 198 commercial aircrafts arriving at Dubai Airport, giving a positive result percentage of 13.6%. The presence of SARS-CoV-2 genes was confirmed using TaqPath™ Covid-19 RT-PCR kit, which targets ORF1ab, N gene and S gene. This project shows the significance of utilizing wastewater-based epidemiology (WBE) in monitoring the prevalence of various infectious diseases such as SARS-CoV-2, which can assist the decision makers to determine the level of precautionary measures according to the areas of the outbreak. With this in mind, pricewise, WBE is considered cost-effective when comparing to clinical nasal swabs.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Aircraft , China/epidemiology , Humans , Prevalence , SARS-CoV-2 , Wastewater
16.
Travel Med Infect Dis ; 35: 101704, 2020.
Article in English | MEDLINE | ID: mdl-32360322

ABSTRACT

BACKGROUND: Mobile phones have become an integral part of modern society. As possible breeding grounds for microbial organisms, these constitute a potential global public health risk for microbial transmission. OBJECTIVE: Scoping review of literature examining microbial's presence on mobile phones in both health care (HC) and community settings. METHODS: A search (PubMed&GoogleScholar) was conducted from January 2005-December 2019 to identify English language studies. Studies were included if samples from mobile phones were tested for bacteria, fungi, and/or viruses; and if the sampling was carried out in any HC setting, and/or within the general community. Any other studies exploring mobile phones that did not identify specific microorganisms were excluded. RESULTS: A total of 56 studies were included (from 24 countries). Most studies identified the presence of bacteria (54/56), while 16 studies reported the presence of fungi. One study focused solely on RNA viruses. Staphylococcus aureus, and Coagulase-Negative Staphylococci were the most numerous identified organisms present on mobile phones. These two species and Escherichia coli were present in over a third of studies both in HC and community samples. Methicillin-resistant S. aureus, Acinetobacter sp., and Bacillus sp. were present in over a third of the studies in HC settings. CONCLUSIONS: While this scoping review of literature regarding microbial identification on mobile phones in HC and community settings did not directly address the issue of SARS-CoV-2 responsible for COVID-19, this work exposes the possible role of mobile phones as a 'Trojan horse' contributing to the transmission of microbial infections in epidemics and pandemics.


Subject(s)
Cell Phone , Community-Acquired Infections/microbiology , Community-Acquired Infections/transmission , Coronavirus Infections/prevention & control , Cross Infection/microbiology , Cross Infection/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Decontamination , Disinfection , Health Personnel , Humans , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Residence Characteristics , SARS-CoV-2
17.
Forensic Sci Int Genet ; 40: 1-8, 2019 05.
Article in English | MEDLINE | ID: mdl-30665115

ABSTRACT

An intra and inter-laboratory study using the probabilistic genotyping (PG) software STRmix™ is reported. Two complex mixtures from the PROVEDIt set, analysed on an Applied Biosystems™ 3500 Series Genetic Analyzer, were selected. 174 participants responded. For Sample 1 (low template, in the order of 200 rfu for major contributors) five participants described the comparison as inconclusive with respect to the POI or excluded him. Where LRs were assigned, the point estimates ranging from 2 × 104 to 8 × 106. For Sample 2 (in the order of 2000 rfu for major contributors), LRs ranged from 2 × 1028 to 2 × 1029. Where LRs were calculated, the differences between participants can be attributed to (from largest to smallest impact): This study demonstrates a high level of repeatability and reproducibility among the participants. For those results that differed from the mode, the differences in LR were almost always minor or conservative.


Subject(s)
DNA Fingerprinting , DNA/analysis , Microsatellite Repeats , Software , Cooperative Behavior , Gene Frequency , Genotype , Humans , Laboratories , Likelihood Functions , Reproducibility of Results
18.
Int J Legal Med ; 132(2): 397-403, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28466124

ABSTRACT

Rapidly mutating Y-chromosomal short tandem repeats (RM Y-STRs) were identified to improve differentiation of unrelated males and also to enable separating closely and distantly related males in human identity testing in forensic and other applications. RM-Yplex assay was developed as a single multiplex that is capable of simultaneously amplifying all currently known RM Y-STRs, and reproducibility and sensitivity testing were performed on reference samples. Additional analyses are necessary to test its suitability for analysing compromised forensic samples. For this purpose, we applied the RM-Yplex assay to approximately 70-year-old skeletons that were used as a model for poorly preserved, challenging forensic samples. We analysed 57 male skeletal remains (bones and teeth) from 55 skeletons excavated from the Second World War (WWII) mass graves in Slovenia. The RM-Yplex typing was successful in all 57 samples; there were 56% full profiles obtained, and in partial profiles, up to 7 locus drop-outs were observed and they appeared correlated with low DNA quantities and degradation of DNA obtained from WWII bone and tooth samples. The longest loci, DYS403S1b, DYS547, DYS627 and DYS526b, were the most often dropped-out RM Y-STRs. In spite of high frequency of drop-out events, the RM-Yplex typing was successful in all WWII samples, showing the possibility of successful amplification of at least half of the RM Y-STRs even from the most compromised samples analysed.


Subject(s)
Chromosomes, Human, Y , DNA Fingerprinting , DNA/analysis , Microsatellite Repeats , Multiplex Polymerase Chain Reaction/instrumentation , Bone and Bones/chemistry , DNA Degradation, Necrotic , Haplotypes , Humans , Male , Tooth/chemistry
20.
Electrophoresis ; 37(21): 2817-2821, 2016 10.
Article in English | MEDLINE | ID: mdl-26970423

ABSTRACT

A multiplex PCR assay consisting of 13 Rapidly Mutating Y STR loci called RM-Yplex was previously developed. Platinum® Taq DNA polymerase was used to amplify the 13 Y STR loci in a single reaction at an amplification time of approximately 2.5 h. In order to shorten the process with reliable results, two DNA polymerases were tested with the multiplex. Phusion® Flash High Fidelity, TAKARA Z-taqTM , and Platinum® Taq DNA polymerases were investigated for conducting RM-Yplex assay at various PCR cycling conditions. Rapid, robust, and efficient amplification of all the markers within the multiplex were achieved. The amplification time was reduced from 2.5 h to less than 28 min with Phusion® Flash High Fidelity DNA polymerase using Veriti® PCR thermal cycler.


Subject(s)
DNA Fingerprinting/methods , Polymerase Chain Reaction/methods , Electrophoresis , Female , Forensic Genetics/methods , Humans , Male , Microsatellite Repeats/genetics , Mutation/genetics , Taq Polymerase
SELECTION OF CITATIONS
SEARCH DETAIL
...