Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Front Pharmacol ; 15: 1373746, 2024.
Article in English | MEDLINE | ID: mdl-38738177

ABSTRACT

Background: Melatonin is responsible for regulating the sleep-wake cycle and circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to manage moderate to severe pain but has a high potential for abuse and dependence. Studies have shown that melatonin could be a potential modulator to reduce tramadol addiction. Methods: Male Wistar rats were used to investigate the effect of melatonin on tramadol-induced place preference. The rats were divided into four groups: control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin (repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while melatonin was administered at 50 mg/kg for both the single dose and repeated-dose groups. The study consisted of two phases: habituation and acquisition. Results: Tramadol administration produced conditioned place preference (CPP) in rats, indicating rewarding effects. However, melatonin administration blocked tramadol-induced CPP. Surprisingly, repeated doses of melatonin were ineffective and did not reduce the expression of CPP compared to that of the single dose administration. Conclusion: The study suggests that melatonin may be a potential therapeutic option for treating tramadol addiction. The results indicate that melatonin attenuates the expression of tramadol-induced CPP, supporting its uses as an adjunct therapy for managing tramadol addiction. However, further studies are needed to investigate its effectiveness in humans.

2.
Neuromolecular Med ; 26(1): 20, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744725

ABSTRACT

The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors. Recent research has also demonstrated the significant involvement of the endocannabinoid system (ECS) in the pathogenesis of several neuropsychiatric diseases, including ASD. In fact, the ECS has the potential to regulate a multitude of metabolic and cellular pathways associated with autism, including the immune system. Moreover, the ECS has emerged as a promising target for intervention with high predictive validity. Particularly noteworthy are resent preclinical studies in rodents, which describe the onset of ASD-like symptoms after various genetic or pharmacological interventions targeting the ECS, providing encouraging evidence for further exploration in this area.


Subject(s)
Autism Spectrum Disorder , Disease Models, Animal , Endocannabinoids , Endocannabinoids/physiology , Endocannabinoids/metabolism , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Animals , Humans , Rats , Receptors, Cannabinoid/physiology , Mice , Child
3.
Chem Biodivers ; : e202301888, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38403786

ABSTRACT

The genus Cornus (Cornaceae) plants are widely distributed in Europe, southwest Asia, North America, and the mountains of Central America, South America, and East Africa. Cornus plants exhibit antimicrobial, antioxidative, antiproliferative, cytotoxic, antidiabetic, anti-inflammatory, neuroprotective and immunomodulatory activities. These plants are exploited to possess various phytoconstituents such as triterpenoids, iridoids, anthocyanins, tannins and flavonoids. Pharmacological research and clinical investigations on various Cornus species have advanced significantly in recent years. Over the past few decades, a significant amount of focus has also been made into developing new delivery systems for Cornus mas and Cornus officinalis. This review focuses on the morphological traits, ethnopharmacology, phytochemistry, pharmacological activities and clinical studies on extracts and active constituents from plants of Cornus genus. The review also highlights recent novel delivery systems for Cornus mas and Cornus officinalis extracts to promote sustained and targeted delivery in diverse disorders. The overwhelming body of research supports the idea that plants from the genus Cornus have therapeutic potential and can be investigated in the future for treatingseveral ailments.

4.
Cell Commun Signal ; 22(1): 106, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38336645

ABSTRACT

Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.


Subject(s)
Aquaporins , Neoplasms , Humans , Neoplasms/pathology , Carcinogenesis , Cell Transformation, Neoplastic , Water/metabolism , Aquaporins/chemistry , Aquaporins/metabolism
6.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37895826

ABSTRACT

BACKGROUND: Red marine algae have shown the potential to reduce inflammation, influence microbiota, and provide neuroprotection. OBJECTIVE: To examine the prebiotic properties of Palmaria palmata aqueous extract (Palmaria p.) and its potential as a neuroprotective agent in multiple sclerosis (MS). METHODS: eighty-eight adult Swiss mice were divided into four male and four female groups, including a control group (distilled water), Palmaria p.-treated group (600 mg/kg b.w.), cuprizone (CPZ)-treated group (mixed chow 0.2%), and a group treated with both CPZ and Palmaria p. The experiment continued for seven weeks. CPZ treatment terminated at the end of the 5th week, with half of the mice sacrificed to assess the demyelination stage. To examine the spontaneous recovery, the rest of the mice continued until the end of week seven. Behavioral (grip strength (GS) and open field tests (OFT)), microbiome, and histological assessments for general morphology of corpus callous (CC) were all conducted at the end of week five and week 7. RESULTS: Palmaria p. can potentially protect against CPZ-induced MS with variable degrees in male and female Swiss mice. This protection was demonstrated through three key findings: (1) increased F/B ratio and expansion of the beneficial Lactobacillus, Proteobacteria, and Bactriodia communities. (2) Protection against the decline in GS induced by CPZ and prevented CPZ-induced anxiety in OFT. (3) Preservation of structural integrity. CONCLUSIONS: Because of its propensity to promote microbiota alterations, its antioxidant activity, and its content of -3 fatty acids, Palmaria p. could be a promising option for MS patients and could be beneficial as a potential probiotic for the at-risk groups as a preventive measure against MS.

7.
Molecules ; 28(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764365

ABSTRACT

Frequent consumption of fruits and vegetables in the daily diet may alleviate the risk of developing chronic diseases. Daucus carota L. (carrot), Beta vulgaris L. (beetroot) Phyllanthus emblica L. (amla), and Lycopersicon esculentum M (tomatoes) are traditionally consumed functional foods that contain a high concentration of antioxidants, ascorbic acid, polyphenols, and numerous phytochemicals. This study assessed how three distinct preparation methods affect the phenolic, flavonoid, carotenoid, and ascorbic acid contents, antioxidant level, and cytotoxicity of the combined fruit extract. The fruit samples were taken in the ratio of carrot (6): beetroot (2): tomato (1.5): amla (0.5) and processed into a lyophilized slurry (LS) extract, lyophilized juice (LJ) extract, and hot-air oven-dried (HAO) extract samples. The sample extracts were assessed for their phytoconstituent concentrations and antioxidant and cytotoxic potential. The total phenolic content in LS, LJ, and HAO extracts was 171.20 ± 0.02, 120.73 ± 0.02, and 72.05 ± 0.01 mg gallic acid equivalent/100 g, respectively and the total flavonoid content was 23.635 ± 0.003, 20.754 ± 0.005, and 18.635 ± 0.005 mg quercetin equivalent/100 g, respectively. Similarly, total ascorbic acid content, carotenoids, and antioxidant potential were higher in the LS and LJ extracts than in HAO. Overall, the LS extract had a substantially higher concentration of phytochemicals and antioxidants, as well as higher cytotoxic potential, compared to the LJ and HAO extracts. The LS extract was tested in the MKN-45 human gastric cancer cell line to demonstrate its effective antioxidant potential and cytotoxicity. Hence, lyophilization (freezing) based techniques are more effective than heat-based techniques in preserving the phytoconstituents and their antioxidant and cytotoxic potential.


Subject(s)
Beta vulgaris , Daucus carota , Phyllanthus emblica , Solanum lycopersicum , Stomach Neoplasms , Humans , Antioxidants/analysis , Phyllanthus emblica/chemistry , Phyllanthus emblica/metabolism , Daucus carota/metabolism , Beta vulgaris/metabolism , Stomach Neoplasms/drug therapy , Plant Extracts/pharmacology , Plant Extracts/analysis , Ascorbic Acid/analysis , Phenols/pharmacology , Phenols/analysis , Flavonoids/pharmacology , Flavonoids/analysis , Carotenoids/pharmacology , Carotenoids/analysis , Phytochemicals/pharmacology , Phytochemicals/analysis , Fruit/chemistry
8.
Ageing Res Rev ; 89: 101965, 2023 08.
Article in English | MEDLINE | ID: mdl-37268112

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disorder. The degeneration of dopaminergic neurons in the midbrain is primarily responsible for the onset of the disease. The major challenge faced in the treatment of PD is the blood-brain barrier (BBB), which impedes the delivery of therapeutics to targeted locations. To address this issue, lipid nanosystems have been used for the precise delivery of therapeutic compounds in anti-PD therapy. In this review, we will discuss the application and clinical significance of lipid nanosystem in delivering therapeutic compounds for anti-PD treatment. These medicinal compounds include ropinirole, apomorphine, bromocriptine, astaxanthin, resveratrol, dopamine, glyceryl monooleate, levodopa, N-3,4-bis(pivaloyloxy)- dopamine and fibroblast growth factor, which have significant potential to treat PD in the early stage. This review, in a nutshell, will pave the way for researchers to develop diagnostic and potential therapeutic approaches using nanomedicine to overcome the challenges posed by the BBB in delivering therapeutic compounds for PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Dopamine , Levodopa/therapeutic use , Lipids
9.
IBRO Neurosci Rep ; 14: 95-110, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37388502

ABSTRACT

Glia, which was formerly considered to exist just to connect neurons, now plays a key function in a wide range of physiological events, including formation of memory, learning, neuroplasticity, synaptic plasticity, energy consumption, and homeostasis of ions. Glial cells regulate the brain's immune responses and confers nutritional and structural aid to neurons, making them an important player in a broad range of neurological disorders. Alzheimer's, ALS, Parkinson's, frontotemporal dementia (FTD), and epilepsy are a few of the neurodegenerative diseases that have been linked to microglia and astroglia cells, in particular. Synapse growth is aided by glial cell activity, and this activity has an effect on neuronal signalling. Each glial malfunction in diverse neurodegenerative diseases is distinct, and we will discuss its significance in the progression of the illness, as well as its potential for future treatment.

11.
Front Pharmacol ; 14: 1002999, 2023.
Article in English | MEDLINE | ID: mdl-37113751

ABSTRACT

Introduction: This research was conducted to validate the folkloric use of Quercus leucotrichophora (QL) leaf extracts against inflammation and arthritis and to determine the chemical composition using HPLC. Method: The aqueous and methanolic extracts of QL were evaluated by in vitro anti-oxidant, anti-inflammatory (inhibition of protein denaturation and membrane stabilization) assays, and in vivo anti-inflammatory (carrageenan and xylene-induced edema) and anti-arthritic models. For anti-arthritic potential, 0.1 mL Complete Freund's Adjuvant (CFA) was inoculated into the left hind paw of a Wistar rat on day 1, and oral dosing with QL methanolic extract (QLME) at 150, 300, and 600 mg/kg was begun at day 8 till the 28th day in all groups, except disease control that was given distilled water, while methotrexate was given as standard treatment. Results and discussion: There was a noteworthy (p < 0.05-0.0001) restoration in body weight, paw edema, arthritic index, altered blood parameters, and oxidative stress biomarkers in treated rats as compared to the diseased group. Moreover, QLME treatment significantly (p < 0.0001) downregulated TNF-α, IL-6, IL-1ß, COX-2, and NF-κB, while significantly (p < 0.0001) upregulating IL-10, I-κB, and IL-4 in contrast to the diseased group. The QLME exhibited no mortality in the acute toxicity study. It was concluded that QLME possessed substantial anti-oxidant, anti-inflammatory, and anti-arthritic potential at all dosage levels prominently at 600 mg/kg might be due to the presence of quercetin, gallic, sinapic, and ferulic acids.

12.
Curr Neuropharmacol ; 21(5): 1081-1099, 2023.
Article in English | MEDLINE | ID: mdl-36927428

ABSTRACT

Mitochondria are critical for homeostasis and metabolism in all cellular eukaryotes. Brain mitochondria are the primary source of fuel that supports many brain functions, including intracellular energy supply, cellular calcium regulation, regulation of limited cellular oxidative capacity, and control of cell death. Much evidence suggests that mitochondria play a central role in neurodegenerative disorders (NDDs) such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Ongoing studies of NDDs have revealed that mitochondrial pathology is mainly found in inherited or irregular NDDs and is thought to be associated with the pathophysiological cycle of these disorders. Typical mitochondrial disturbances in NDDs include increased free radical production, decreased ATP synthesis, alterations in mitochondrial permeability, and mitochondrial DNA damage. The main objective of this review is to highlight the basic mitochondrial problems that occur in NDDs and discuss the use mitochondrial drugs, especially mitochondrial antioxidants, mitochondrial permeability transition blockade, and mitochondrial gene therapy, for the treatment and control of NDDs.


Subject(s)
Mitochondrial Diseases , Neurodegenerative Diseases , Humans , Oxidative Stress/physiology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Mitochondria/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/therapeutic use
13.
Diagnostics (Basel) ; 13(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36766442

ABSTRACT

The vast use of corticosteroids (CCSs) globally has led to an increase in CCS-induced neuropsychiatric disorders (NPDs), a very common manifestation in patients after CCS consumption. These neuropsychiatric disorders range from depression, insomnia, and bipolar disorders to panic attacks, overt psychosis, and many other cognitive changes in such subjects. Though their therapeutic importance in treating and improving many clinical symptoms overrides the complications that arise after their consumption, still, there has been an alarming rise in NPD cases in recent years, and they are seen as the greatest public health challenge globally; therefore, these potential side effects cannot be ignored. It has also been observed that many of the neuronal functional activities are regulated and controlled by genomic variants with epigenetic factors (DNA methylation, non-coding RNA, and histone modeling, etc.), and any alterations in these regulatory mechanisms affect normal cerebral development and functioning. This study explores a general overview of emerging concerns of CCS-induced NPDs, the effective molecular biology approaches that can revitalize NPD therapy in an extremely specialized, reliable, and effective manner, and the possible gene-editing-based therapeutic strategies to either prevent or cure NPDs in the future.

14.
Brain Sci ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36831786

ABSTRACT

Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.

16.
J Biomol Struct Dyn ; 41(12): 5635-5645, 2023.
Article in English | MEDLINE | ID: mdl-35787781

ABSTRACT

Neuronal damage in iron-sensitive brain regions occurs as a result of iron dyshomeostasis. Increased iron levels and iron-related pathogenic triggers are associated with neurodegenerative diseases, including Alzheimer's disease (AD). Ferritin is a key player involved in iron homeostasis. Major pathological hallmarks of AD are amyloid plaques, neurofibrillary tangles (NFTs) and synaptic loss that lead to cognitive dysfunction and memory loss. Natural compounds persist in being the most excellent molecules in the area of drug discovery because of their different range of therapeutic applications. Bryostatins are naturally occurring macrocyclic lactones that can be implicated in AD therapeutics. Among them, Bryostatin 1 regulates protein kinase C, a crucial player in AD pathophysiology, thus highlighting the importance of bryostatin 1 in AD management. Thus, this study explores the binding mechanism of Bryotstain 1 with ferritin. In this work, the molecular docking calculations revealed that bryostatin 1 has an appreciable binding potential towards ferritin by forming stable hydrogen bonds (H-bonds). Molecular dynamics simulation studies deciphered the binding mechanism and conformational dynamics of ferrritin-bryostatin 1 system. The analyses of root mean square deviation, root mean square fluctuations, Rg, solvent accessible surface area, H-bonds and principal component analysis revealed the stability of the ferritin-bryostatin 1 docked complex throughout the trajectory of 100 ns. Moreover, the free energy landscape analysis advocated that the ferritin-bryostatin 1 complex stabilized to the global minimum. Altogether, the present work delineated the binding of bryostatin 1 with ferritin that can be implicated in the management of AD.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Bryostatins/pharmacology , Bryostatins/chemistry , Bryostatins/metabolism , Ferritins/therapeutic use , Molecular Docking Simulation , Iron/metabolism
17.
Curr Neuropharmacol ; 21(5): 1165-1183, 2023.
Article in English | MEDLINE | ID: mdl-36043795

ABSTRACT

Abnormal mitochondrial morphology and metabolic dysfunction have been observed in many neurodegenerative disorders (NDDs). Mitochondrial dysfunction can be caused by aberrant mitochondrial DNA, mutant nuclear proteins that interact with mitochondria directly or indirectly, or for unknown reasons. Since mitochondria play a significant role in neurodegeneration, mitochondriatargeted therapies represent a prosperous direction for the development of novel drug compounds that can be used to treat NDDs. This review gives a brief description of how mitochondrial abnormalities lead to various NDDs such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. We further explore the promising therapeutic effectiveness of mitochondria- directed antioxidants, MitoQ, MitoVitE, MitoPBN, and dimebon. We have also discussed the possibility of mitochondrial gene therapy as a therapeutic option for these NDDs.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Mitochondria/metabolism , Alzheimer Disease/drug therapy , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/therapeutic use , Parkinson Disease/metabolism
18.
Metab Brain Dis ; 38(1): 61-68, 2023 01.
Article in English | MEDLINE | ID: mdl-36149588

ABSTRACT

Glioblastoma (GB) are aggressive tumors that obstruct normal brain function. While the skull cannot expand in response to cancer growth, the growing pressure in the brain is generally the first sign. It can produce more frequent headaches, unexplained nausea or vomiting, blurred peripheral vision, double vision, a loss of feeling or movement in an arm or leg, and difficulty speaking and concentrating; all depend on the tumor's location. GB can also cause vascular thrombi, damaging endothelial cells and leading to red blood cell leakage. Latest studies have revealed the role of single nucleotide polymorphisms (SNPs) in developing and spreading cancers such as GB and breast cancer. Many discovered SNPs are associated with GB, particularly in great abundance in the promoter region, creating polygenetic vulnerability to glioma. This study aims to compile a list of some of the most frequent and significant SNPs implicated with GB formation and proliferation.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Endothelial Cells/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain/pathology
19.
Mediators Inflamm ; 2022: 8353472, 2022.
Article in English | MEDLINE | ID: mdl-36578323

ABSTRACT

Aim: This study is aimed at evaluating the use of curcumin-loaded polylactic-co-glycolic acid nanoparticles (CUR-loaded PLGA NPs) as a treatment against monosodium iodoacetate- (MIA-) induced knee OA. Materials and Methods: Eighteen rats were assigned to three groups (n = 6), namely, normal control group that received intra-articular injections (IAIs) of saline, an OA control group that received an IAIs of MIA (2 mg/50 µL), and a treatment group (MIA+CUR-loaded PLGA NPs) that received IAIs of CUR-loaded PLGA NPs (200 mg/kg b.wt). Results: The CUR NP treatment against knee OA alleviated radiographic alternations and histopathological changes and inhibited the upregulation in the serum levels of interleukin-1ß, tumor necrosis factor-α, interleukin-6, and transforming growth factor-beta and the downregulation in interleukin-10. CUR NP-treated joints also decreased the mRNA expression of nuclear factor-kappa B and inducible nitric oxide synthase and the protein expression of matrix metalloproteinase-13 and caspase-3. Finally, CUR-loaded PLGA NP treatment mitigated the loss of type II collagen, which resulted in a significant reduction in malondialdehyde level and increased the glutathione content and superoxide dismutase activity compared with that of the OA group. Conclusion: This study demonstrated that the administration of CUR NPs could provide effective protection against MIA-induced OA and knee joint histological deteriorated changes due to its anti-inflammatory, antioxidant, and antiapoptotic properties.


Subject(s)
Curcumin , Nanoparticles , Osteoarthritis, Knee , Rats , Animals , Curcumin/therapeutic use , Curcumin/pharmacology , Iodoacetic Acid/toxicity , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Nanoparticles/therapeutic use
20.
Front Pharmacol ; 13: 1028356, 2022.
Article in English | MEDLINE | ID: mdl-36386233

ABSTRACT

Given the high whittling down rates, high costs, and moderate pace of new medication, revelation, and improvement, repurposing "old" drugs to treat typical and uncommon illnesses is progressively becoming an appealing proposition. Drug repurposing is the way toward utilizing existing medications in treating diseases other than the purposes they were initially designed for. Faced with scientific and economic challenges, the prospect of discovering new medication indications is enticing to the pharmaceutical sector. Medication repurposing can be used at various stages of drug development, although it has shown to be most promising when the drug has previously been tested for safety. We describe strategies of drug repurposing for Parkinson's disease, which is a neurodegenerative condition that primarily affects dopaminergic neurons in the substantia nigra. We also discuss the obstacles faced by the repurposing community and suggest new approaches to solve these challenges so that medicine repurposing can reach its full potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...