Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci ; 95(9): 4164-4171, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28992006

ABSTRACT

The effects of microbial contamination (MC) on CP degradability of concentrate feeds are still controversial. Therefore, the aim of this study was to use N to estimate the impact of MC on estimations of CP fractions (the soluble fraction of CP [a], the insoluble but potentially degradable fraction of CP [b], and the rate of digestion of fraction b [kd]) of concentrate feeds. Twelve types of feed were evaluated: 6 energy concentrates-wheat bran ( L.), rice meal ( L.), ground corn ( L.), ground sorghum ( Pers.), ground corn cob ( L.), and soybean hulls [ (L.) Merr.]-and 6 protein concentrates-cottonseed meal ( L.), soybean meal [ (L.) Merr.], ground bean ( L.), peanut meal ( L.), sunflower meal ( L.), and corn gluten meal ( L.). The feeds were divided into 4 groups and were incubated in the rumen of 4 crossbred bulls. The samples were incubated for 0, 2, 4, 8, 16, 24, 48, and 72 h. To estimate the MC of the incubated residues, the ruminal bacteria were labeled with N via continuous intraruminal infusion of (NH)SO. There was no difference ( = 0.738) between corrected and uncorrected parameters a, b, and kd for all feeds that were evaluated. All of the feed tests followed an exponential model of degradation, and the model fitted well to the data, except for corn gluten meal, probably because the maximum incubation time that was used (72 h) was not long enough to allow for an accurate estimation of the degradation profile. Therefore, correction of ruminal protein degradation to MC is irrelevant with regards to the concentrates that were studied.


Subject(s)
Animal Feed/analysis , Bacteria/metabolism , Cattle/physiology , Nitrogen/metabolism , Plant Proteins/metabolism , Animal Feed/microbiology , Animals , Dietary Proteins/metabolism , Digestion , Male , Nitrogen/analysis , Nitrogen Isotopes/analysis , Proteolysis , Rumen/metabolism
2.
J Anim Sci ; 95(4): 1766-1776, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28464092

ABSTRACT

Weaned Nellore bulls ( = 36; 274 ± 34 kg) were used in a randomized block design with a 2 × 2 factorial arrangement of treatments to evaluate intake, fecal excretion, and performance with different concentrations of minerals. Experimental diets were formulated with 2 concentrations of Ca and P (macromineral factor; diet supplying 100% of Ca and P according to BR-CORTE () [CaP+] or diet without limestone and dicalcium phosphate [CaP-]) and 2 concentrations of microminerals (micromineral factor; diet with supplementation of microminerals [Zn, Mn, and Cu; CuMnZn+] or diet without supplementation of microminerals [Zn, Mn, and Cu; CuMnZn-]). The factor CaP- was formulated without the addition of limestone and dicalcium phosphate, and the factor CuMnZn- was formulated without inorganic supplementation of microminerals (premix). The diets were isonitrogenous (13.3% CP). Intake was individually monitored every day. Indigestible NDF was used as an internal marker for digestibility estimates. The bulls were slaughtered (84 or 147 d on feed), and then carcass characteristics were measured and liver and rib samples were collected. Feed, feces, rib bones, and liver samples were analyzed for DM, ash, CP, ether extract (EE), Ca, P, Zn, Mn, and Cu. There were no significant interactions ( ≥ 0.06) between macro- and micromineral supplementation for any variables in the study. Calcium, P, and micromineral concentrations did not affect ( ≥ 0.20) intake of DM, OM, NDF, EE, CP, TDN, and nonfiber carbohydrates (NFC). Calcium and P intake were affected ( < 0.01) by macromineral factor. Animals fed without Ca and P supplementation consumed less of these minerals. Dry matter and nutrient fecal excretion (OM, NDF, EE, CP, and NFC) were similar ( ≥ 0.23) among all factors. Performance and carcass characteristics were similar ( ≥ 0.09) among diets. The content of ash in rib bones was not affected by diets ( ≥ 0.06). Plasma P and phosphatase alkaline concentrations were similar ( ≥ 0.52) among diets. Supplementation of microminerals decreased ( < 0.01) plasma Ca concentration; nevertheless, all analyzed blood metabolites were within the reference values. Supplementation of Ca and P increased ( < 0.01) fecal excretion of these minerals. These results indicate that mineral supplementation (Ca, P, Zn, Mn, and Cu) of conventional feedlot diets for Nellore bulls may be not necessary. Dietary reductions in these minerals would represent a decrease in the cost of feedlot diets. Dietary reduction in Ca and P content cause a decrease in fecal excretion of these minerals, which, in turn, represents an opportunity to reduce the environmental impact of feedlot operations.


Subject(s)
Bone and Bones/drug effects , Calcium, Dietary/pharmacology , Cattle/physiology , Minerals/pharmacology , Phosphorus, Dietary/pharmacology , Animal Feed/analysis , Animals , Bone Density/drug effects , Bone and Bones/metabolism , Copper/administration & dosage , Copper/metabolism , Copper/pharmacology , Diet/veterinary , Dietary Supplements , Feces , Liver/metabolism , Male , Manganese/administration & dosage , Manganese/metabolism , Manganese/pharmacology , Minerals/administration & dosage , Minerals/metabolism , Zinc/administration & dosage , Zinc/metabolism , Zinc/pharmacology
3.
J Anim Sci ; 95(4): 1696-1706, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28464116

ABSTRACT

The objectives of this study were to quantify the mineral balance of Nellore cattle fed with and without Ca, P, and micromineral (MM) supplementation and to estimate the net and dietary mineral requirement for cattle. Nellore cattle ( = 51; 270.4 ± 36.6 kg initial BW and 8 mo age) were assigned to 1 of 3 groups: reference ( = 5), maintenance ( = 4), and performance ( = 42). The reference group was slaughtered prior to the experiment to estimate initial body composition. The maintenance group was used to collect values of animals at low gain and reduced mineral intake. The performance group was assigned to 1 of 6 treatments: sugarcane as the roughage source with a concentrate supplement composed of soybean meal and soybean hulls with and without Ca, P, and MM supplementation; sugarcane as the roughage source with a concentrate supplement composed of soybean meal and ground corn with and without Ca, P, and MM supplementation; and corn silage as the roughage source with a concentrate supplement composed of soybean meal and ground corn with and without Ca, P, and MM supplementation. Orthogonal contrasts were adopted to compare mineral intake, fecal and urinary excretion, and apparent retention among treatments. Maintenance requirements and true retention coefficients were generated with the aid of linear regression between mineral intake and mineral retention. Mineral composition of the body and gain requirements was assessed using nonlinear regression between body mineral content and mineral intake. Mineral intake and fecal and urinary excretion were measured. Intakes of Ca, P, S, Cu, Zn, Mn, Co, and Fe were reduced in the absence of Ca, P, and MM supplementation ( < 0.05). Fecal excretion of Ca, Cu, Zn, Mn, and Co was also reduced in treatments without supplementation ( < 0.01). Overall, excretion and apparent absorption and retention coefficients were reduced when minerals were not supplied ( < 0.05). The use of the true retention coefficient instead of the true absorption coefficient provided a better estimate of mineral requirements. Dietary mineral requirements were lower for P, Cu, and Zn and greater for Fe compared with previously published recommendations. This study provides useful information about mineral requirements and mineral supplementation to obtain adequate dietary mineral supply of Nellore cattle in tropical conditions.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Dietary Supplements/analysis , Minerals/analysis , Animals , Body Composition , Body Fluids/chemistry , Diet/veterinary , Dietary Fiber , Feces/chemistry , Male , Nutritional Requirements , Saccharum , Silage , Glycine max , Zea mays
4.
J Anim Sci ; 94(6): 2479-84, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27285924

ABSTRACT

It is expensive and laborious to evaluate carcass composition in beef cattle. The objective of this study was to evaluate a method to predict the 9th to 11th rib section (rib) composition through empirical equations using dual energy X-ray absorptiometry (DXA). Dual energy X-ray absorptiometry is a validated method used to describe tissue composition in humans and other animals, but few studies have evaluated this technique in beef cattle, and especially in the Zebu genotype. A total of 116 rib were used to evaluate published prediction equations for rib composition and to develop new regression models using a cross-validation procedure. For the proposed models, 93 ribs were randomly selected to calculate the new regression equations, and 23 different ribs were randomly selected to validate the regressions. The rib from left carcasses were taken from Nellore and Nellore × Angus bulls from 3 different studies and scanned using DXA equipment (GE Healthcare, Madison, WI) in the Health Division at Universidade Federal de Viçosa (Viçosa, Brazil). The outputs of the DXA report were DXA lean (g), DXA fat free mass (g), DXA fat mass (g), and DXA bone mineral content (BMC; g). After being scanned, the rib were dissected, ground, and chemically analyzed for total ether extract (EE), CP, water, and ash content. The predictions of rib fat and protein from previous published equations were different ( < 0.01) from the observed composition. New equations were established through leave-one-out cross-validation using the REG procedure in SAS. The equations were as follows: lean (g) = 37.082 + 0.907× DXA lean ( = 0.95); fat free mass (g) = 103.224 + 0.869 × DXA fat free mass ( = 0.93); EE mass (g) = 122.404 + 1.119 × DXA fat mass ( = 0.86); and ash mass (g) = 18.722 + 1.016 × DXA BMC ( = 0.39). The equations were validated using Mayer's test, the concordance correlation coefficient, and the mean square error of prediction for decomposition. For both equations, Mayer's test indicated that if the intercept and the slope were equal to 0 and 1 ( > 0.05), respectively, then the equation correctly estimated the rib composition. Comparing observed and predicted values using the new equations, Mayer's test was not significant for lean mass ( = 0.26), fat free mass ( = 0.67), EE mass ( = 0.054), and ash mass ( = 0.14). We concluded that the rib composition of Nellore and Nellore × Angus bulls can be estimated from DXA using the proposed equations.


Subject(s)
Absorptiometry, Photon/veterinary , Cattle , Fats/analysis , Proteins/analysis , Ribs/chemistry , Adipose Tissue/chemistry , Animals , Body Composition , Bone Density , Brazil , Male , Red Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...