Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 192: 106654, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38013123

ABSTRACT

Cystic fibrosis (CF) is an inherited lung disease characterised by the accumulation of thick layers of dried mucus in the lungs which serve as a nidus for chronic infection. Pseudomonas aeruginosa is the predominant cause of chronic lung infection in cystic fibrosis. The dense mucus coupled with biofilm formation hinder antibiotic penetration and prevent them from reaching their target. Mucoactive agents are recommended in the treatment of CF in combination with antibiotics. In spite of the extensive research in developing novel drug combinations for the treatment of lung infection in CF, to our knowledge, there is no study that combines antibiotic, antibiofilm and mucoactive agent in a single inhaled dry powder formulation. In the present study, we investigate the possibility of adding a mucoactive agent to our previously developed ciprofloxacinquercetin (antibiotic-antibiofilm) dry powder for inhalation. Three mucoactive agents, namely mannitol (MAN), N-acetyl-L-cysteine (NAC) and ambroxol hydrochloride (AMB), were investigated for this purpose. The ternary combinations were prepared via spray drying without the addition of excipients. All ternary combinations conserved or improved the antibacterial and biofilm inhibition activities of ciprofloxacin against P. aeruginosa (ATCC 10145). The addition of AMB resulted in an amorphous ternary combination (SD-CQA) with superior physical stability as indicated by DSC and nonambient XRPD. Furthermore, SD-CQA displayed better in vitro aerosolization performance (ED ∼ 71 %; FPF ∼ 49 %) compared to formulations containing MAN and NAC (ED ∼ 64 % and 44 %; FPF ∼ 44 % and 29 %, respectively). In conclusion, a ternary drug combination powder with suitable aerosolization, physical stability and antibacterial/antibiofilm properties was prepared by a single spray drying step.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Pseudomonas aeruginosa , Cystic Fibrosis/drug therapy , Powders , Particle Size , Respiratory Aerosols and Droplets , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Administration, Inhalation , Acetylcysteine , Drug Combinations , Biofilms , Dry Powder Inhalers/methods , Pseudomonas Infections/drug therapy
2.
Int J Pharm ; 642: 123151, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37364778

ABSTRACT

Spray drying is a well-suited technique for producing fixed-dose drug combinations. There has been a growing interest in utilizing spray drying to engineer carrier-free inhalable drug particles. The aim of this study was to understand and optimise the spray drying process of a ciprofloxacin-quercetin fixed dose combination intended for pulmonary administration. A 24-1 fractional factorial design and multivariate data analysis was used to identify important process parameters and investigate correlations with particle characteristics. The independent variables were solute concentration along with the processing parameters: solution flow rate, atomizing air flow rate and inlet temperature. The dependent variables included particle size distribution, yield and residual moisture content (RMC). Correlations between dependent and independent variables were further investigated via principal component analysis. Overall, solution flow rate, atomizing air flow rate and inlet temperature were found to affect the particle size D(v,50) and D(v,90) while the solute concentration and the atomizing air flow rate mainly affected the span. The inlet temperature was the most important parameter affecting the RMC and the yield. The formulation with optimized independent variables had a D(v,50) and span values of 2.42 µm and 1.81 with excellent process yield >70% and low RMC i.e. 3.4%. The optimized formulation was further investigated for its in vitro aerosolization performance using next generation impactor (NGI); it exhibited high emitted dose (ED > 80%) and fine particle fractions (FPF > 70%) for both drugs.


Subject(s)
Ciprofloxacin , Quercetin , Spray Drying , Administration, Inhalation , Drug Combinations , Particle Size , Powders , Aerosols , Dry Powder Inhalers
3.
Pharmaceutics ; 14(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35456634

ABSTRACT

Nano spray drying has emerged as an outstanding platform for engineering micro- and nanoparticles, with growing applications in various areas of drug delivery. As a new technology involving distinct technical design, parameters of the nano spray drying process are not fully elucidated. In a quality-by-design approach, the aim of the current study was to gain thorough understanding of critical determinants of product characteristics in the Büchi Nano Spray Dryer B-90. Following a factorial experimental design, a series of spray drying experiments were conducted to gain new insights into the influences of the inlet temperature, the spray solvent, and the solute concentration in the spray solution on the yield, the moisture content, and the particle size of the nano spray-dried powder material. Special consideration was given to the potential of using hydroethanolic in comparison with aqueous solvent systems and to particle engineering for pulmonary drug delivery. Lactose and mannitol, widely used as excipients in dry powder inhalation formulations, were used as model materials. Lactose and mannitol are known to spray dry in amorphous and crystalline forms, respectively. The yields of spray drying of lactose and mannitol amounted generally to 71.1 ± 6.6% w/w and 66.1 ± 3.5% w/w, respectively. The spray-dried materials exhibited generally a number-weighted median particle diameter of 1.6 ± 0.2 µm and a volume-weighted median particle diameter of 5.1 ± 1.0 µm. A detailed analysis of the results improved understanding of the interplay between process parameters in the Nano Spray Dryer. The results demonstrate that optimization of spray generation is the key to yield optimization. On the other hand, particle size is determined by the spray mesh pore size and the spray solution degree of saturation. Selection of an appropriate spray solvent and using spray solution additives could optimize spray flow. In parallel, the spray solvent and the solute concentration in the spray solution determine the degree of saturation. Guidance on optimization of particle engineering by nano spray drying is provided.

4.
Int J Pharm ; 618: 121657, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35288220

ABSTRACT

Spray drying is an increasingly used particle engineering technique for the production of dry powders for inhalation. However, the amorphous nature of most spray-dried particles remains a big challenge affecting both the chemical and the physical stability of the dried particles. Here, we study the possibility of producing co-amorphous ciprofloxacin-quercetin inhalable particles with improved amorphous stability compared to the individual amorphous drugs. Ciprofloxacin (CIP), a broad-spectrum antibiotic, was co-spray dried with quercetin (QUE), a compound with antibiofilm properties, from an ethanol-water co-solvent system at 2:1, 1:1 and 1:2 M ratios to investigate the formation of co-amorphous CIP-QUE particles. Differential scanning colorimetry (DSC) and X-ray powder diffraction (XRPD) were used for solid-state characterization; dynamic vapor sorption (DVS) was used for investigating the moisture sorption behaviour. The intermolecular interaction was studied via solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy; the miscibility of the drugs was predicted via free energy calculations based on the Flory-Huggins interaction parameter (χ). A next generation impactor (NGI) was used to study the in vitro aerosol performance of the spray-dried powders. The physicochemical characteristics such as particle size, density, morphology, cohesion, water content and saturation solubility of the spray-dried powders were also studied. The co-spray-dried CIP-QUE powders prepared at the three molar ratios were predominantly amorphous. However, differences were observed between sample types. It was found that at a molar ratio of 1:1, CIP and QUE form a single co-amorphous system. However, increasing the molar ratio of either drug results in the formation of an additional amorphous phase, formed from the excess of the corresponding drug. Despite these differences, DVS showed that elevated humidity had a much lower influence on all three co-amorphous systems compared with the individual amorphous drugs. In vitro aerosolization study showed co-deposition of the two drugs from CIP-QUE powders with a desirable aerosol performance (ED âˆ¼ 72-94%; FPF âˆ¼ 48-65%) whereas QUE-only amorphous powder had an ED of 36% and a FPF of 22%. In summary, spray-dried CIP-QUE combinations resulted in co-amorphous systems with boosted stability and improved aerosol performance with the 1:1 M ratio exhibiting the greatest improvement.


Subject(s)
Ciprofloxacin , Dry Powder Inhalers , Administration, Inhalation , Aerosols/chemistry , Ciprofloxacin/chemistry , Dry Powder Inhalers/methods , Particle Size , Powders/chemistry , Quercetin , Water
5.
Int J Pharm ; 613: 121388, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34923051

ABSTRACT

Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.


Subject(s)
Ciprofloxacin , Cystic Fibrosis , Administration, Inhalation , Ciprofloxacin/therapeutic use , Cystic Fibrosis/drug therapy , Humans , Lung , Powders/therapeutic use
6.
Pharmaceutics ; 13(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34683876

ABSTRACT

Pulmonary delivery of chitosan nanoparticles is met with nanoparticle agglomeration and exhalation. Admixing lactose-based microparticles (surface area-weighted diameter~5 µm) with nanoparticles mutually reduces particle agglomeration through surface adsorption phenomenon. Lactose-polyethylene glycol (PEG) microparticles with different sizes, morphologies and crystallinities were prepared by a spray drying method using varying PEG molecular weights and ethanol contents. The chitosan nanoparticles were similarly prepared. In vitro inhalation performance and peripheral lung deposition of chitosan nanoparticles were enhanced through co-blending with larger lactose-PEG microparticles with reduced specific surface area. These microparticles had reduced inter-microparticle interaction, thereby promoting microparticle-nanoparticle interaction and facilitating nanoparticles flow into peripheral lung.

7.
Drug Discov Today ; 26(10): 2384-2396, 2021 10.
Article in English | MEDLINE | ID: mdl-33872799

ABSTRACT

Leucine is a promising excipient with several applications in the development of inhalable spray-dried powder of high- and low-dose drugs. The addition of leucine has exhibited significant enhancing effects on the aerosolization and physical stability of the produced particles. Here, we focus not only on the applications of leucine in inhalable spray-drying powders, but also on the underlying mechanisms by which the formulation and processing parameters dictate the behavior of leucine during the drying process and, therefore, its functionalities within the dried powder. Additionally, we highlight the current regulatory status of leucine. Such insights are important for more efficient utilization of leucine in the future, both for dry powder inhaler formulations and other pharmaceutical applications.


Subject(s)
Drug Development/methods , Excipients/chemistry , Leucine/chemistry , Administration, Inhalation , Aerosols , Drug Stability , Dry Powder Inhalers , Humans , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Powders
8.
Asian J Pharm Sci ; 15(3): 374-384, 2020 May.
Article in English | MEDLINE | ID: mdl-32636955

ABSTRACT

Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. Blending nanoparticles with lactose microparticles (∼5 µm) could mutually reduce their agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were prepared by spray drying technique as a function of chitosan, surfactant and processing conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 microparticles, exhibited a comparable inhalation performance with the commercial dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade impactor analysis indicated that the aerosolization and inhalation performance of chitosan nanoparticles was promoted by their higher zeta potential and circularity, and larger size attributes of which led to reduced inter-nanoparticulate aggregation and favored nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into deep and peripheral lungs.

9.
Expert Opin Drug Deliv ; 15(12): 1223-1247, 2018 12.
Article in English | MEDLINE | ID: mdl-30422017

ABSTRACT

INTRODUCTION: Pulmonary drug delivery is organ-specific and benefits local drug action for lung cancer. The use of nanotechnology and targeting ligand enables cellular-specific drug action. Combination approaches increase therapeutic efficacy and reduce adverse effects of cancer chemotherapeutics that have narrow therapeutic index window and high cytotoxicity levels. The current progress of inhaled cancer chemotherapeutics has not been examined with respect to targeting strategy and clinical application potential. AREAS COVERED: This review examines the state of the art in passive (processing and formulation) and active (targeting ligand and receptor binding) technologies in association with the use of nanocarrier to combat lung cancer. It highlights routes to equip nanocarrier with targeting ligands as a function of the chemistry of participating biomolecules and challenges in inhalational nanoproduct development and clinical applications. Both research and review articles were examined using the Scopus, Elsevier, Web of Science, Chemical Abstracts, Medline, CASREACT, CHEMCATS, and CHEMLIST database with the majority of information retrieved between those of 2000-2018. EXPERT COMMENTARY: The therapeutic efficacy of targeting ligand-decorated nanocarriers needs to be demonstrated in vivo in the form of finished inhalational products. Their inhalation efficiency and medical responses require further examination. Clinical application of inhaled nanocancer chemotherapeutics is premature.


Subject(s)
Drug Delivery Systems , Lung Neoplasms/drug therapy , Nanotechnology/methods , Administration, Inhalation , Drug Carriers/chemistry , Humans , Ligands , Lung/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...