Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 29(4): 148, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38682204

ABSTRACT

BACKGROUND: Disease risk variants are likely to affect gene expression in a context- and cell-type specific manner. The membrane bound O-acyltransferase domain containing 7 (MBOAT7) rs8736 metabolic-dysfunction-associated fatty liver disease (MAFLD)-risk variant was recently reported to be a negative regulator of toll-like receptors (TLRs) signalling in macrophages. Whether this effect is generic or cell-type specific in immune cells is unknown. METHODS: We investigated the impact of modulating TLR signaling on MBOAT7 expression in peripheral blood mononuclear cells (PBMCs). We also examined whether the rs8736 polymorphism in MBOAT7 regulates this effect. Furthermore, we measured the allele-specific expression of MBOAT7 in various immune cell populations under both unstimulated and stimulated conditions. RESULTS: We show that MBOAT7 is down-regulated by TLRs in PBMCs. This effect is modulated by the MBOAT7 rs8736 polymorphism. Additionally, we provide evidence that MBOAT7 acts primarily as a modulator of TLR signalling in mononuclear phagocytes. CONCLUSION: Our results highlight the importance of studying Genome-Wide Association Studies (GWAS) signals in the specific cell types in which alterations of gene expression are found.


Subject(s)
Acyltransferases , Leukocytes, Mononuclear , Membrane Proteins , Humans , Acyltransferases/genetics , Genetic Predisposition to Disease/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Polymorphism, Single Nucleotide , Signal Transduction/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism
2.
Biomedicines ; 11(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37626750

ABSTRACT

Cyclin dependent kinase inhibitor 2A (CDKN2A) is a well-known tumor suppressor gene as it functions as a cell cycle regulator. While several reports correlate the malfunction of CDKN2A with the initiation and progression of several types of human tumors, there is a lack of a comprehensive study that analyzes the potential effect of CDKN2A genetic alterations on the human immune components and the consequences of that effect on tumor progression and patient survival in a pan-cancer model. The first stage of the current study was the analysis of CDKN2A differential expression in tumor tissues and the corresponding normal ones and correlating that with tumor stage, grade, metastasis, and clinical outcome. Next, a detailed profile of CDKN2A genetic alteration under tumor conditions was described and assessed for its effect on the status of different human immune components. CDKN2A was found to be upregulated in cancerous tissues versus normal ones and that predicted the progression of tumor stage, grade, and metastasis in addition to poor prognosis under different forms of tumors. Additionally, CDKN2A experienced different forms of genetic alteration under tumor conditions, a characteristic that influenced the infiltration and the status of CD8, the chemokine CCL4, and the chemokine receptor CCR6. Collectively, the current study demonstrates the potential employment of CDKN2A genetic alteration as a prognostic and immunological biomarker under several types of human cancers.

3.
Metabolism ; 144: 155583, 2023 07.
Article in English | MEDLINE | ID: mdl-37146900

ABSTRACT

Lean patients with MAFLD have an initial adaptive metabolic response characterised by increased serum bile acids and Farnesoid X Receptor (FXR) activity. How this adaptive response wanes resulting in an equal or perhaps worse long-term adverse outcome compared to patients with obese MAFLD is not known. We show that patients with lean MAFLD have endotoxemia while their macrophages demonstrate excess production of inflammatory cytokines in response to activation by Toll-like receptor (TLR) ligands when compared to healthy subjects. Alterations of the lean MAFLD macrophage epigenome drives this response and suppresses bile acids signalling to drive inflammation. Our data suggests that selectively restoring bile acids signalling might restore adaptive metabolic responses in patients with MAFLD who are lean.


Subject(s)
Endotoxemia , Non-alcoholic Fatty Liver Disease , Humans , Receptors, Cytoplasmic and Nuclear/genetics , Endotoxemia/genetics , Inflammation/genetics , Bile Acids and Salts , Epigenesis, Genetic
4.
Nat Commun ; 13(1): 7430, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36473860

ABSTRACT

The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.


Subject(s)
COVID-19 , Liver Diseases , Humans , Toll-Like Receptors , Acyltransferases , Membrane Proteins
5.
J Clin Transl Hepatol ; 10(1): 134-139, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35233382

ABSTRACT

The prevalence of metabolic (dysfunction)-associated fatty liver disease (MAFLD) is rapidly increasing and affects up to two billion individuals globally, and this has also resulted in increased risks for cirrhosis, hepatocellular carcinoma, and liver transplants. In addition, it has also been linked to extrahepatic consequences, such as cardiovascular disease, diabetes, and various types of cancers. However, only a small proportion of patients with MAFLD develop these complications. Therefore, the identification of high-risk patients is paramount. Liver fibrosis is the major determinant in developing these complications. Although, liver biopsy is still considered the gold standard for the assessment of patients with MAFLD. Because of its invasive nature, among many other limitations, the search for noninvasive biomarkers for MAFLD remains an area of intensive research. In this review, we provide an update on the current and future biomarkers of MAFLD, including a discussion of the associated genetics, epigenetics, microbiota, and metabolomics. We also touch on the next wave of multiomic-based biomarkers.

6.
Curr Opin Gastroenterol ; 38(3): 251-260, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35143431

ABSTRACT

PURPOSE OF REVIEW: In 2020, a novel comprehensive redefinition of fatty liver disease was proposed by an international panel of experts. This review aims to explore current evidence regarding the impact of this new definition on the current understanding of the epidemiology, pathogenesis, diagnosis, and clinical trials for fatty liver disease. RECENT FINDINGS: The effectiveness of metabolic dysfunction-associated fatty liver disease (MAFLD) was compared to the existing criteria for nonalcoholic fatty liver disease (NAFLD). Recent data robustly suggest the superior utility of MAFLD in identifying patients at high risk for metabolic dysfunction, the hepatic and extra-hepatic complications, as well as those who would benefit from genetic testing, including patients with concomitant liver diseases. This change in name and criteria also appears to have improved disease awareness among patients and physicians. SUMMARY: The transformation in name and definition from NAFLD to MAFLD represents an important milestone, which indicates significant tangible progress towards a more inclusive, equitable, and patient-centred approach to addressing the profound challenges of this disease. Growing evidence has illustrated the broader and specific contexts that have tremendous potential for positively influencing the diagnosis and treatment. In addition, the momentum accompanying this name change has included widespread public attention to the unique burden of this previously underappreciated disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology
8.
World J Gastroenterol ; 26(16): 1861-1878, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32390698

ABSTRACT

Metabolic associated fatty liver disease (MAFLD), formerly named non-alcoholic fatty liver disease is the most common liver disorder in many countries. The inflammatory subtype termed steatohepatitis is a driver of disease progression to cirrhosis, hepatocellular carcinoma, liver transplantation, and death, but also to extrahepatic complications including cardiovascular disease, diabetes and chronic kidney disease. The plasticity of macrophages in response to various environmental cues and the fact that they can orchestrate cross talk between different cellular players during disease development and progression render them an ideal target for drug development. This report reviews recent advances in our understanding of macrophage biology during the entire spectrum of MAFLD including steatosis, inflammation, fibrosis, and hepatocellular carcinoma, as well as for the extra-hepatic manifestations of MAFLD. We discuss the underlying molecular mechanisms of macrophage activation and polarization as well as cross talk with other cell types such as hepatocytes, hepatic stellate cells, and adipose tissue. We conclude with a discussion on the potential translational implications and challenges for macrophage based therapeutics for MAFLD.


Subject(s)
Carcinoma, Hepatocellular/immunology , Kupffer Cells/immunology , Liver Cirrhosis/immunology , Liver Neoplasms/immunology , Non-alcoholic Fatty Liver Disease/immunology , Adipose Tissue/cytology , Adipose Tissue/immunology , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Communication/immunology , Disease Models, Animal , Disease Progression , Hepatic Stellate Cells/immunology , Hepatocytes/immunology , Humans , Liver/immunology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Macrophage Activation , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...