Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Virol ; 96(9): e0219821, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35438536

ABSTRACT

HIV-1 encodes a viral protease that is essential for the maturation of infectious viral particles. While protease inhibitors are effective antiretroviral agents, recent studies have shown that prematurely activating, rather than inhibiting, protease function leads to the pyroptotic death of infected cells, with exciting implications for efforts to eradicate viral reservoirs. Despite 40 years of research into the kinetics of protease activation, it remains unclear exactly when protease becomes activated. Recent reports have estimated that protease activation occurs minutes to hours after viral release, suggesting that premature protease activation is challenging to induce efficiently. Here, monitoring viral protease activity with sensitive techniques, including nanoscale flow cytometry and instant structured illumination microscopy, we demonstrate that the viral protease is activated within cells prior to the release of free virions. Using genetic mutants that lock protease into a precursor conformation, we further show that both the precursor and mature protease have rapid activation kinetics and that the activity of the precursor protease is sufficient for viral fusion with target cells. Our finding that HIV-1 protease is activated within producer cells prior to release of free virions helps resolve a long-standing question of when protease is activated and suggests that only a modest acceleration of protease activation kinetics is required to induce potent and specific elimination of HIV-infected cells. IMPORTANCE HIV-1 protease inhibitors have been a mainstay of antiretroviral therapy for more than 2 decades. Although antiretroviral therapy is effective at controlling HIV-1 replication, persistent reservoirs of latently infected cells quickly reestablish replication if therapy is halted. A promising new strategy to eradicate the latent reservoir involves prematurely activating the viral protease, which leads to the pyroptotic killing of infected cells. Here, we use highly sensitive techniques to examine the kinetics of protease activation during and shortly after particle formation. We found that protease is fully activated before virus is released from the cell membrane, which is hours earlier than recent estimates. Our findings help resolve a long-standing debate as to when the viral protease is initially activated during viral assembly and confirm that prematurely activating HIV-1 protease is a viable strategy to eradicate infected cells following latency reversal.


Subject(s)
HIV Protease , HIV-1 , Enzyme Activation/physiology , HIV Infections/virology , HIV Protease/metabolism , HIV-1/drug effects , HIV-1/enzymology , Humans , Protease Inhibitors/pharmacology
2.
J Extracell Vesicles ; 10(8): e12112, 2021 06.
Article in English | MEDLINE | ID: mdl-34188786

ABSTRACT

In late 2019, a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China. SARS-CoV-2 and the disease it causes, coronavirus disease 2019 (COVID-19), spread rapidly and became a global pandemic in early 2020. SARS-CoV-2 spike protein is responsible for viral entry and binds to angiotensin converting enzyme 2 (ACE2) on host cells, making it a major target of the immune system - particularly neutralizing antibodies (nAbs) that are induced by infection or vaccines. Extracellular vesicles (EVs) are small membraned particles constitutively released by cells, including virally-infected cells. EVs and viruses enclosed within lipid membranes share some characteristics: they are small, sub-micron particles and they overlap in cellular biogenesis and egress routes. Given their shared characteristics, we hypothesized that EVs released from spike-expressing cells could carry spike and serve as decoys for anti-spike nAbs, promoting viral infection. Here, using mass spectrometry and nanoscale flow cytometry (NFC) approaches, we demonstrate that SARS-CoV-2 spike protein can be incorporated into EVs. Furthermore, we show that spike-carrying EVs act as decoy targets for convalescent patient serum-derived nAbs, reducing their effectiveness in blocking viral entry. These findings have important implications for the pathogenesis of SARS-CoV-2 infection in vivo and highlight the complex interplay between viruses, extracellular vesicles, and the immune system that occurs during viral infections.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/therapy , Extracellular Vesicles/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/immunology , COVID-19/virology , Flow Cytometry , HEK293 Cells , Humans , Immunization, Passive , Protein Binding , Spike Glycoprotein, Coronavirus/analysis , COVID-19 Serotherapy
3.
Science ; 368(6488)2020 04 17.
Article in English | MEDLINE | ID: mdl-32299921

ABSTRACT

Control of messenger RNA (mRNA) decay rate is intimately connected to translation elongation, but the spatial coordination of these events is poorly understood. The Ccr4-Not complex initiates mRNA decay through deadenylation and activation of decapping. We used a combination of cryo-electron microscopy, ribosome profiling, and mRNA stability assays to examine the recruitment of Ccr4-Not to the ribosome via specific interaction of the Not5 subunit with the ribosomal E-site in Saccharomyces cerevisiae This interaction occurred when the ribosome lacked accommodated A-site transfer RNA, indicative of low codon optimality. Loss of the interaction resulted in the inability of the mRNA degradation machinery to sense codon optimality. Our findings elucidate a physical link between the Ccr4-Not complex and the ribosome and provide mechanistic insight into the coupling of decoding efficiency with mRNA stability.


Subject(s)
Codon , Peptide Chain Elongation, Translational , RNA Stability , Repressor Proteins/metabolism , Ribonucleases/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Cryoelectron Microscopy , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Peptide Initiation Factors/metabolism , Protein Conformation, alpha-Helical , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Ribonucleases/chemistry , Ribonucleases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Eukaryotic Translation Initiation Factor 5A
4.
Cell ; 175(7): 1872-1886.e24, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30449621

ABSTRACT

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


Subject(s)
Cytidine/analogs & derivatives , N-Terminal Acetyltransferase E/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Acetylation , Cytidine/genetics , Cytidine/metabolism , HeLa Cells , Humans , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferases , RNA, Messenger/genetics
5.
Cell Rep ; 24(7): 1704-1712, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30110627

ABSTRACT

Tissue-specific mRNA stability is important for cell fate and physiology, but the mechanisms involved are not fully understood. We found that zygotic mRNA stability in Drosophila correlates with codon content: optimal codons are enriched in stable transcripts associated with metabolic functions like translation, while non-optimal codons are enriched in unstable transcripts, including those associated with neural development. Bioinformatic analyses and reporter assays revealed that similar codons stabilize or destabilize mRNAs in the nervous system and other tissues, but the link between codon content and stability is attenuated in the nervous system. We confirmed that optimal codons are decoded by abundant tRNAs while non-optimal codons are decoded by less abundant tRNAs in embryos and in the nervous system. We conclude that codon optimality is a general determinant of zygotic mRNA stability, and attenuation of codon optimality allows trans-acting factors to exert greater influence over mRNA decay in the nervous system.


Subject(s)
Codon/chemistry , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Transfer/genetics , Animals , Animals, Genetically Modified , Codon/metabolism , Computational Biology/methods , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Half-Life , Humans , Neurogenesis/genetics , RNA Stability , RNA, Messenger/metabolism , RNA, Transfer/metabolism , Zygote/growth & development , Zygote/metabolism
6.
RNA ; 24(10): 1377-1389, 2018 10.
Article in English | MEDLINE | ID: mdl-29997263

ABSTRACT

Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels in eukaryotic cells. Previous work by us and others has shown that codon identity exerts a powerful influence on mRNA stability. In Saccharomyces cerevisiae, studies using a handful of reporter mRNAs show that optimal codons increase translation elongation rate, which in turn increases mRNA stability. However, a direct relationship between elongation rate and mRNA stability has not been established across the entire yeast transcriptome. In addition, there is evidence from work in higher eukaryotes that amino acid identity influences mRNA stability, raising the question as to whether the impact of translation elongation on mRNA decay is at the level of tRNA decoding, amino acid incorporation, or some combination of each. To address these questions, we performed ribosome profiling of wild-type yeast. In good agreement with other studies, our data showed faster codon-specific elongation over optimal codons and faster transcript-level elongation correlating with transcript optimality. At both the codon-level and transcript-level, faster elongation correlated with increased mRNA stability. These findings were reinforced by showing increased translation efficiency and kinetics for a panel of 11 HIS3 reporter mRNAs of increasing codon optimality. While we did observe that elongation measured by ribosome profiling is composed of both amino acid identity and synonymous codon effects, further analyses of these data establish that A-site tRNA decoding rather than other steps of translation elongation is driving mRNA decay in yeast.


Subject(s)
Binding Sites , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Ribosomes/metabolism , Codon , Protein Binding , RNA Processing, Post-Transcriptional , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Mol Cell ; 70(6): 1089-1100.e8, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29932902

ABSTRACT

Translation and decay of eukaryotic mRNAs is controlled by shortening of the poly(A) tail and release of the poly(A)-binding protein Pab1/PABP. The Ccr4-Not complex contains two exonucleases-Ccr4 and Caf1/Pop2-that mediate mRNA deadenylation. Here, using a fully reconstituted biochemical system with proteins from the fission yeast Schizosaccharomyces pombe, we show that Pab1 interacts with Ccr4-Not, stimulates deadenylation, and differentiates the roles of the nuclease enzymes. Surprisingly, Pab1 release relies on Ccr4 activity. In agreement with this, in vivo experiments in budding yeast show that Ccr4 is a general deadenylase that acts on all mRNAs. In contrast, Caf1 only trims poly(A) not bound by Pab1. As a consequence, Caf1 is a specialized deadenylase required for the selective deadenylation of transcripts with lower rates of translation elongation and reduced Pab1 occupancy. These findings reveal a coupling between the rates of translation and deadenylation that is dependent on Pab1 and Ccr4-Not.


Subject(s)
Exoribonucleases/metabolism , Poly(A)-Binding Protein I/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Cytoplasm/metabolism , Endonucleases/metabolism , Exoribonucleases/genetics , Poly A/metabolism , Polyadenylation , RNA Stability , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribonucleases/metabolism , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
8.
Cell ; 167(1): 122-132.e9, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641505

ABSTRACT

A major determinant of mRNA half-life is the codon-dependent rate of translational elongation. How the processes of translational elongation and mRNA decay communicate is unclear. Here, we establish that the DEAD-box protein Dhh1p is a sensor of codon optimality that targets an mRNA for decay. First, we find mRNAs whose translation elongation rate is slowed by inclusion of non-optimal codons are specifically degraded in a Dhh1p-dependent manner. Biochemical experiments show Dhh1p is preferentially associated with mRNAs with suboptimal codon choice. We find these effects on mRNA decay are sensitive to the number of slow-moving ribosomes on an mRNA. Moreover, we find Dhh1p overexpression leads to the accumulation of ribosomes specifically on mRNAs (and even codons) of low codon optimality. Lastly, Dhh1p physically interacts with ribosomes in vivo. Together, these data argue that Dhh1p is a sensor for ribosome speed, targeting an mRNA for repression and subsequent decay.


Subject(s)
Codon/metabolism , DEAD-box RNA Helicases/metabolism , Protein Biosynthesis , RNA Stability , RNA, Messenger/metabolism , Ribosomes/metabolism , Codon/genetics , DEAD-box RNA Helicases/genetics , Half-Life
9.
RNA ; 22(5): 709-21, 2016 May.
Article in English | MEDLINE | ID: mdl-26952104

ABSTRACT

Decay of mRNA is essential for the efficient regulation of gene expression. A major pathway of mRNA degradation is initiated by the shortening of the poly(A) tail via the CCR4/NOT deadenylase complex. Deadenylation is followed by removal of the 5' cap (i.e., decapping) and then 5' to 3' exonucleolytic decay of the message body. The highly conserved CCR4/NOT deadenylase complex consists of the exonucleases CCR4 and POP2/CAF1, as well as a group of four or five (depending on organism) accessory factors of unknown function, i.e., the NOT proteins. In this study, we find thatSaccharomyces cerevisiaeNot2p, Not3p, and Not5p (close paralogs of each other) are involved in promoting mRNA decapping. Furthermore, we find that Not3p and Not5p bind to the decapping activator protein Pat1p. Together, these data implicate the deadenylase complex in coordinating the downstream decapping reaction via Not2p, Not3p, and Not5p. This suggests that the coupling of deadenylation with decapping is, in part, a direct consequence of coordinated assembly of decay factors.


Subject(s)
RNA Caps , RNA, Messenger/genetics , Saccharomyces cerevisiae Proteins/physiology , Amino Acid Sequence , Blotting, Western , Molecular Sequence Data , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid , Two-Hybrid System Techniques
10.
Cell ; 160(6): 1111-24, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25768907

ABSTRACT

mRNA degradation represents a critical regulated step in gene expression. Although the major pathways in turnover have been identified, accounting for disparate half-lives has been elusive. We show that codon optimality is one feature that contributes greatly to mRNA stability. Genome-wide RNA decay analysis revealed that stable mRNAs are enriched in codons designated optimal, whereas unstable mRNAs contain predominately non-optimal codons. Substitution of optimal codons with synonymous, non-optimal codons results in dramatic mRNA destabilization, whereas the converse substitution significantly increases stability. Further, we demonstrate that codon optimality impacts ribosome translocation, connecting the processes of translation elongation and decay through codon optimality. Finally, we show that optimal codon content accounts for the similar stabilities observed in mRNAs encoding proteins with coordinated physiological function. This work demonstrates that codon optimization exists as a mechanism to finely tune levels of mRNAs and, ultimately, proteins.


Subject(s)
Codon , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Protein Biosynthesis , RNA Stability , RNA, Fungal/chemistry , RNA, Messenger/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...