Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37430616

ABSTRACT

As the population increases, the number of motorized vehicles on the roads also increases. As the number of vehicles increases, traffic congestion occurs. Traffic lights are used at road junctions, intersections, pedestrian crossings, and other places where traffic needs to be controlled to avoid traffic chaos. Due to traffic lights installed in the city, queues of vehicles are formed on the streets for most of the day, and many problems arise because of this. One of the most important problems is that emergency vehicles, such as ambulances, fire engines, police cars, etc., cannot arrive on time despite traffic priorities. Emergency vehicles such as hospitals and police departments need to reach the scene in a very short time. Time loss is a problem that needs to be addressed, especially for emergency vehicles traveling in traffic. In this study, ambulances, fire brigades, police, etc., respond to emergencies. A solution and a related application have been developed so privileged vehicles can reach their target destination as soon as possible. In this study, a route is determined between the current location of an emergency vehicle and its target location in an emergency. Communication between traffic lights is provided with a mobile application developed specifically for the vehicle driver. In this process, the person controlling the lights can turn on the traffic lights during the passage of vehicles. After the vehicles with priority to pass passed, traffic signaling was normalized via the mobile application. This process was repeated until the vehicle reached its destination.

2.
Diagnostics (Basel) ; 12(11)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36428850

ABSTRACT

Magnetic Resonance Imaging (MRI) is a noninvasive technique used in medical imaging to diagnose a variety of disorders. The majority of previous systems performed well on MRI datasets with a small number of images, but their performance deteriorated when applied to large MRI datasets. Therefore, the objective is to develop a quick and trustworthy classification system that can sustain the best performance over a comprehensive MRI dataset. This paper presents a robust approach that has the ability to analyze and classify different types of brain diseases using MRI images. In this paper, global histogram equalization is utilized to remove unwanted details from the MRI images. After the picture has been enhanced, a symlet wavelet transform-based technique has been suggested that can extract the best features from the MRI images for feature extraction. On gray scale images, the suggested feature extraction approach is a compactly supported wavelet with the lowest asymmetry and the most vanishing moments for a given support width. Because the symlet wavelet can accommodate the orthogonal, biorthogonal, and reverse biorthogonal features of gray scale images, it delivers higher classification results. Following the extraction of the best feature, the linear discriminant analysis (LDA) is employed to minimize the feature space's dimensions. The model was trained and evaluated using logistic regression, and it correctly classified several types of brain illnesses based on MRI pictures. To illustrate the importance of the proposed strategy, a standard dataset from Harvard Medical School and the Open Access Series of Imaging Studies (OASIS), which encompasses 24 different brain disorders (including normal), is used. The proposed technique achieved the best classification accuracy of 96.6% when measured against current cutting-edge systems.

3.
Comput Intell Neurosci ; 2022: 6447769, 2022.
Article in English | MEDLINE | ID: mdl-35548099

ABSTRACT

Magnetic resonance imaging (MRI) is an accurate and noninvasive method employed for the diagnosis of various kinds of diseases in medical imaging. Most of the existing systems showed significant performances on small MRI datasets, while their performances decrease against large MRI datasets. Hence, the goal was to design an efficient and robust classification system that sustains a high recognition rate against large MRI dataset. Accordingly, in this study, we have proposed the usage of a novel feature extraction technique that has the ability to extract and select the prominent feature from MRI image. The proposed algorithm selects the best features from the MRI images of various diseases. Further, this approach discriminates various classes based on recursive values such as partial Z-value. The proposed approach only extracts a minor feature set through, respectively, forward and backward recursion models. The most interrelated features are nominated in the forward regression model that depends on the values of partial Z-test, while the minimum interrelated features are diminished from the corresponding feature space under the presence of the backward model. In both cases, the values of Z-test are estimated through the defined labels of the diseases. The proposed model is efficiently looking the localized features, which is one of the benefits of this method. After extracting and selecting the best features, the model is trained by utilizing support vector machine (SVM) to provide the predicted labels to the corresponding MRI images. To show the significance of the proposed model, we utilized a publicly available standard dataset such as Harvard Medical School and Open Access Series of Imaging Studies (OASIS), which contains 24 various brain diseases including normal. The proposed approach achieved the best classification accuracy against existing state-of-the-art systems.


Subject(s)
Brain , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Support Vector Machine
4.
J Healthc Eng ; 2022: 4724342, 2022.
Article in English | MEDLINE | ID: mdl-35378936

ABSTRACT

Image denoising methods are important in order to diminish various kinds of noises, which are presented either capturing the image or distorted during image transmission. Signal-to-noise ratio (SNR) is one of the main barriers which avoids the theoretical observations to be accomplished in practice. In this study, we have utilized various kinds of filtering operators against three various noises, which are the signal-to-noise ratio comparison against the phantom image in spatial and frequency domain. In frequency domain, the average filter is used to smooth the image and frequency domain, and Gaussian low-pass filter is applied with empirically determined cutoff frequency. This work has six major parts such as applying average filter, determining the SNR of region of interest, transforming the image in frequency domain by discrete Fourier transform, obtaining the rectangular Gaussian low-pass filter along with a cutoff frequency, multiplying them, and carrying out the inverse Fourier transform. These steps are repeated accordingly until the resulting image SNR is equal to or greater than the spatial domain SNR. In order to achieve the goal of this study, we have analyzed the proposed approach against some of complex phantom images. The performances of these filters are compared against signal-to-noise ratio.


Subject(s)
Algorithms , Humans , Normal Distribution , Phantoms, Imaging , Signal-To-Noise Ratio
5.
J Healthc Eng ; 2021: 5528622, 2021.
Article in English | MEDLINE | ID: mdl-33884157

ABSTRACT

Breast cancer forms in breast cells and is considered as a very common type of cancer in women. Breast cancer is also a very life-threatening disease of women after lung cancer. A convolutional neural network (CNN) method is proposed in this study to boost the automatic identification of breast cancer by analyzing hostile ductal carcinoma tissue zones in whole-slide images (WSIs). The paper investigates the proposed system that uses various convolutional neural network (CNN) architectures to automatically detect breast cancer, comparing the results with those from machine learning (ML) algorithms. All architectures were guided by a big dataset of about 275,000, 50 × 50-pixel RGB image patches. Validation tests were done for quantitative results using the performance measures for every methodology. The proposed system is found to be successful, achieving results with 87% accuracy, which could reduce human mistakes in the diagnosis process. Moreover, our proposed system achieves accuracy higher than the 78% accuracy of machine learning (ML) algorithms. The proposed system therefore improves accuracy by 9% above results from machine learning (ML) algorithms.


Subject(s)
Breast Neoplasms , Algorithms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Humans , Machine Learning , Neural Networks, Computer
6.
J Healthc Eng ; 2021: 6666458, 2021.
Article in English | MEDLINE | ID: mdl-33575020

ABSTRACT

Heart angiography is a test in which the concerned medical specialist identifies the abnormality in heart vessels. This type of diagnosis takes a lot of time by the concerned physician. In our proposed method, we segmented the interested regions of heart vessels and then classified. Segmentation and classification of heart angiography provides significant information for the physician as well as patient. Contradictorily, in the mention domain of heart angiography, the charge is prone to error, phase overwhelming, and thought-provoking task for the physician (heart specialist). An automatic segmentation and classification of heart blood vessels descriptions can improve the truthfulness and speed up the finding of heart illnesses. In this work, we recommend a computer-assisted conclusion arrangement for the localization of human heart blood vessels within heart angiographic imageries by using multiclass ensemble classification mechanism. In the proposed work, the heart blood vessels will be first segmented, and the various features according to accuracy have been extracted. Low-level features such as texture, statistical, and geometrical features were extracted in human heart blood vessels. At last, in the proposed framework, heart blood vessels have been categorized in their four respective classes including normal, block, narrow, and blood flow-reduced vessels. The proposed approach has achieved best result which provides very useful, easy, accurate, and time-saving environment to cardiologists for the diagnosis of heart-related diseases.


Subject(s)
Heart Diseases , Machine Learning , Algorithms , Heart , Humans , Image Processing, Computer-Assisted/methods
7.
J Healthc Eng ; 2021: 6623904, 2021.
Article in English | MEDLINE | ID: mdl-33510888

ABSTRACT

Oral cancer is a complex disorder. Its creation and spreading are due to the interaction of several proteins and genes in different biological thoroughfares. To study biological pathways, many high-yield methods have been used. Efforts to merge several data found at separate levels related to biological thoroughfares and interlinkage networks remain elusive. In our research work, we have proposed a technique known as protein-protein interaction network for analysis and exploring the genes involved in oral cancer disorders. The previous studies have not fully analyzed the proteins or genes involved in oral cancer. Our proposed technique is fully interactive and analyzes the data of oral cancer disorder more accurately and efficiently. The methods used here enabled us to observe the wide network consists of one mighty network comprising of 208 nodes 1572 edges which connect these nodes and various detached small networks. In our study, TP53 is a gene that occupied an important position in the network. TP53 has a 113-degree value and 0.03881821 BC value, indicating that TP53 is centrally localized in the network and is a significant bottleneck protein in the oral cancer protein-protein interaction network. These findings suggested that the pathogenesis of oral cancer variation was organized by means of an integrated PPI network, which is centered on TP53. Furthermore, our identification shows that TP53 is the key role-playing protein in the oral cancer network, and its significance in the cellular networks in the body is determined as well. As TP53 (tumor protein 53) is a vital player in the cell division process, the cells may not grow or divide disorderly; it fulfills the function of at least one of the gene groups in oral cancer. However, the latter progression in the area is any measure; the intention of developing these networks is to transfigure sketch of core disease development, prognosis, and treatment.


Subject(s)
Computational Biology , Mouth Neoplasms , Humans , Mouth Neoplasms/genetics , Prognosis , Protein Interaction Maps , Tumor Suppressor Protein p53
SELECTION OF CITATIONS
SEARCH DETAIL
...