Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Dalton Trans ; 53(19): 8289-8297, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38660950

ABSTRACT

A CoIII complex (2) of a bispyridine-dioxime ligand (H2LNMe2) containing a tertiary amine group in the proximity of the Co center is synthesized and characterized. One of the oxime protons of the ligand is deprotonated, and the amine group remains protonated in the solid-state structure of the CoII complex (2a). The acid-base properties of 2 showed pKa values of 5.9, 8.4, and 9.6, which are assigned to the dissociation of two consecutive oxime protons and amine protons, respectively. The electrocatalytic proton reduction of 2 was investigated in an aqueous phosphate buffer solution (PBS), revealing a catalytic hydrogen evolution reaction (HER) at an Ecat/2 of -1.01 V vs. the SHE, with an overpotential of 673 mV and a kobs value of 2.6 × 103 s-1 at pH 7. For comparison, the HER of the Co complex (1) lacking the tert-amine group at the secondary sphere was investigated in PBS, which showed a kobs of 1.3 × 103 s-1 and an overpotential of 577 mV. At pH 4, however, 2 revealed a ∼3 times higher kobs value than 1, which suggests that the protonated amine group likely works as a proton relay site. Notably, no significant change in the reaction rate was observed at different pH values for 1, implying that oxime protons may not be involved in the intramolecular proton-coupled electron transfer reaction in the HER. The kobs values for Co complexes at pH 7.0 are significantly higher than those of the [Co(dmgH)2(pyridine)(Cl)] complex, implying that the primary coordination sphere around 1 or 2 enhances the HER and offers better catalyst stability in acidic buffer solutions.

2.
Chempluschem ; : e202400035, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552142

ABSTRACT

A novel tellurium (Te) containing fluorophore, 1 and its nickel (2) and copper (3) containing metal organic complex (MOC) have been synthesized to exploit their structural and optical properties and to deploy these molecules as fluorescent probes for the selective and sensitive detection of picric acid (PA) over other commonly available nitro-explosives. Furthermore, density functional theory (DFT) and single crystal X-ray diffraction (SCXRD) techniques revealed the inclusion of "soft" Tellurium (Te) and "hard" Nitrogen (N), Oxygen (O) atoms in the molecular frameworks. Owing to the presence of electron rich "N" and "O" atoms along with "Te" in the molecular framework, 1 could efficiently and selectively sense PA with more than 80 % fluorescence quenching efficiency in organic medium and having detection limit of 4.60 µM. The selective detection of PA compared to other nitro-explosives follows a multi-mechanism based "turn-off" sensing which includes photo-induced electron transfer (PET), electrostatic (π-π stacking and π-anion/cation) interaction, intermolecular hydrogen bonding and inner filter effect (IFE). The test strip study also establishes the sensitivity of 1 for detection of PA.

4.
Emerg Infect Dis ; 29(10): 2072-2082, 2023 10.
Article in English | MEDLINE | ID: mdl-37735743

ABSTRACT

The 2010 cholera epidemic in Haiti was thought to have ended in 2019, and the Prime Minister of Haiti declared the country cholera-free in February 2022. On September 25, 2022, cholera cases were again identified in Port-au-Prince. We compared genomic data from 42 clinical Vibrio cholerae strains from 2022 with data from 327 other strains from Haiti and 1,824 strains collected worldwide. The 2022 isolates were homogeneous and closely related to clinical and environmental strains circulating in Haiti during 2012-2019. Bayesian hypothesis testing indicated that the 2022 clinical isolates shared their most recent common ancestor with an environmental lineage circulating in Haiti in July 2018. Our findings strongly suggest that toxigenic V. cholerae O1 can persist for years in aquatic environmental reservoirs and ignite new outbreaks. These results highlight the urgent need for improved public health infrastructure and possible periodic vaccination campaigns to maintain population immunity against V. cholerae.


Subject(s)
Cholera , Vibrio cholerae , Humans , Vibrio cholerae/genetics , Haiti/epidemiology , Bayes Theorem , Cholera/epidemiology , Disease Outbreaks
5.
Emerg Infect Dis ; 29(10): 2141-2144, 2023 10.
Article in English | MEDLINE | ID: mdl-37735754

ABSTRACT

Vibrio mimicus caused a seafood-associated outbreak in Florida, USA, in which 4 of 6 case-patients were hospitalized; 1 required intensive care for severe diarrhea. Strains were ctx-negative but carried genes for other virulence determinants (hemolysin, proteases, and types I-IV and VI secretion systems). Cholera toxin-negative bacterial strains can cause cholera-like disease.


Subject(s)
Cholera , Vibrio mimicus , Humans , Cholera/epidemiology , Florida/epidemiology , Vibrio mimicus/genetics , Disease Outbreaks , Seafood
6.
Microbiol Spectr ; 11(3): e0265222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37074192

ABSTRACT

Cholera has been a human scourge since the early 1800s and remains a global public health challenge, caused by the toxigenic strains of the bacterium Vibrio cholerae. In its aquatic reservoirs, V. cholerae has been shown to live in association with various arthropod hosts, including the chironomids, a diverse insect family commonly found in wet and semiwet habitats. The association between V. cholerae and chironomids may shield the bacterium from environmental stressors and amplify its dissemination. However, the interaction dynamics between V. cholerae and chironomids remain largely unknown.  In this study, we developed freshwater microcosms with chironomid larvae to test the effects of cell density and strain on V. cholerae-chironomid interactions. Our results show that chironomid larvae can be exposed to V. cholerae up to a high inoculation dose (109 cells/mL) without observable detrimental effects. Meanwhile, interstrain variability in host invasion, including prevalence, bacterial load, and effects on host survival, was highly cell density-dependent. Microbiome analysis of the chironomid samples by 16S rRNA gene amplicon sequencing revealed a general effect of V. cholerae exposure on microbiome species evenness. Taken together, our results provide novel insights into V. cholerae invasion dynamics of the chironomid larvae with respect to various doses and strains. The findings suggest that aquatic cell density is a crucial driver of V. cholerae invasion success in chironomid larvae and pave the way for future work examining the effects of a broader dose range and environmental variables (e.g., temperature) on V. cholerae-chironomid interactions. IMPORTANCE Vibrio cholerae is the causative agent of cholera, a significant diarrheal disease affecting millions of people worldwide. Increasing evidence suggests that the environmental facets of the V. cholerae life cycle involve symbiotic associations with aquatic arthropods, which may facilitate its environmental persistence and dissemination. However, the dynamics of interactions between V. cholerae and aquatic arthropods remain unexplored. This study capitalized on using freshwater microcosms with chironomid larvae to investigate the effects of bacterial cell density and strain on V. cholerae-chironomid interactions. Our results suggest that aquatic cell density is the primary determinant of V. cholerae invasion success in chironomid larvae, while interstrain variability in invasion outcomes can be observed under specific cell density conditions. We also determined that V. cholerae exposure generally reduces species evenness of the chironomid-associated microbiome. Collectively, these findings provide novel insights into V. cholerae-arthropod interactions using a newly developed experimental host system.


Subject(s)
Chironomidae , Cholera , Vibrio cholerae , Animals , Humans , Vibrio cholerae/genetics , Cholera/microbiology , Chironomidae/genetics , Chironomidae/microbiology , RNA, Ribosomal, 16S/genetics , Ecosystem , Larva
7.
Microbiol Spectr ; 11(1): e0362422, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36537825

ABSTRACT

Toxigenic Vibrio cholerae O1 serotype Ogawa was introduced involuntarily into Haiti in October 2010, and virtually all of the clinical strains isolated during the first 5 years of the epidemic were Ogawa. Inaba strains were identified intermittently prior to 2015, with diverse mutations resulting in a common phenotype. In 2015, the percentage of clinical infections due to the Inaba serotype began to rapidly increase, with Inaba supplanting Ogawa as the dominant serotype during the subsequent 4 years. We investigated the molecular basis of the serotype switch and confirmed that all Inaba strains had the same level of mRNA expression of the wbeT genes, as well as the same translation levels for the truncated WbeT proteins in the V. cholerae Inaba isolates. Neither wbeT gene expression levels, differential mutations, or truncation size of the WbeT proteins appeared to be responsible for the successful Inaba switch in 2015. Our phylodynamic analysis demonstrated that the V. cholerae Inaba strains in Haiti evolved directly from Ogawa strains and that a significant increase of diversifying selection at the population level occurred at the time of the Ogawa-Inaba switch. We conclude that the emergence of the Inaba serotype was driven by diversifying selection, independent of the mutational pattern in the wbeT gene. IMPORTANCE Our phylodynamic analysis demonstrated that Vibrio cholerae Inaba strains in Haiti evolved directly from Ogawa strains. Our results support the hypothesis that after an initial Ogawa-dominated epidemic wave, V. cholerae Inaba was able to become the dominant strain thanks to a selective advantage driven by ongoing diversifying selection, independently from the mutational pattern in the wbeT gene.


Subject(s)
Cholera , Vibrio cholerae O1 , Humans , Vibrio cholerae O1/genetics , Serogroup , Cholera/epidemiology , Haiti/epidemiology , Serotyping
8.
Emerg Infect Dis ; 28(12): 2482-2490, 2022 12.
Article in English | MEDLINE | ID: mdl-36417939

ABSTRACT

Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.


Subject(s)
Bacteriophages , Cholera , Vibrio cholerae O1 , Humans , Cholera/epidemiology , Cholera/microbiology , Bacteriophages/genetics , Democratic Republic of the Congo/epidemiology , Phylogeny
9.
Trop Med Infect Dis ; 7(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36287998

ABSTRACT

In this paper, we provide an overview of how spatial video data collection enriched with contextual mapping can be used as a universal tool to investigate sub-neighborhood scale health risks, including cholera, in challenging environments. To illustrate the method's flexibility, we consider the life cycle of the Mujoga relief camp set up after the Nyiragongo volcanic eruption in the Democratic Republic of Congo on 22 May 2021. More specifically we investigate how these methods have captured the deteriorating conditions in a camp which is also experiencing lab-confirmed cholera cases. Spatial video data are collected every month from June 2021 to March 2022. These coordinate-tagged images are used to make monthly camp maps, which are then returned to the field teams for added contextual insights. At the same time, a zoom-based geonarrative is used to discuss the camp's changes, including the cessation of free water supplies and the visible deterioration of toilet facilities. The paper concludes by highlighting the next data science advances to be made with SV mapping, including machine learning to automatically identify and map risks, and how these are already being applied in Mujoga.

10.
Article in English | MEDLINE | ID: mdl-35897275

ABSTRACT

Disease risk associated with contaminated water, poor sanitation, and hygiene in informal settlement environments is conceptually well understood. From an analytical perspective, collecting data at a suitably fine scale spatial and temporal granularity is challenging. Novel mobile methodologies, such as spatial video (SV), can complement more traditional epidemiological field work to address this gap. However, this work then poses additional challenges in terms of analytical visualizations that can be used to both understand sub-neighborhood patterns of risk, and even provide an early warning system. In this paper, we use bespoke spatial programming to create a framework for flexible, fine-scale exploratory investigations of simultaneously-collected water quality and environmental surveys in three different informal settlements of Port-au-Prince, Haiti. We dynamically mine these spatio-temporal epidemiological and environmental data to provide insights not easily achievable using more traditional spatial software, such as Geographic Information System (GIS). The results include sub-neighborhood maps of localized risk that vary monthly. Most interestingly, some of these epidemiological variations might have previously been erroneously explained because of proximate environmental factors and/or meteorological conditions.


Subject(s)
Communications Media , Poverty Areas , Geographic Information Systems , Hygiene , Sanitation
11.
Infect Immun ; 90(8): e0016122, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35862704

ABSTRACT

Cholera is an acute watery, diarrheal disease that causes high rates of morbidity and mortality without treatment. Early detection of the etiologic agent of toxigenic Vibrio cholerae is important to mobilize treatment and mitigate outbreaks. Monoclonal antibody (mAb) based rapid diagnostic tests (RDTs) enable early detection in settings without laboratory capacity. However, the odds of an RDT testing positive are reduced by nearly 90% when the common virulent bacteriophage ICP1 is present. We hypothesize that adding a mAb for the common, and specific, virulent bacteriophage ICP1 as a proxy for V. cholerae to an RDT will increase diagnostic sensitivity when virulent ICP1 phage is present. In this study, we used an in-silico approach to identify immunogenic ICP1 protein targets that were conserved across disparate time periods and locations. Specificity of targets to cholera patients with known ICP1 was determined, and specific targets were used to produce mAbs in a murine model. Candidate mAbs to the head protein demonstrated specificity to ICP1 by Enzyme linked immunosorbent assay (ELISA) and an ICP1 phage neutralization assay. The limit of detection of the final mAb candidate for ICP1 phage particles spiked into cholera stool matrix was 8 × 105 PFU by Western blotting analysis. This mAb will be incorporated into a RDT prototype for evaluation in a future diagnostic study to test the guiding hypothesis behind this study.


Subject(s)
Bacteriophages , Cholera , Vibrio cholerae , Acute Disease , Animals , Antibodies, Monoclonal/metabolism , Cholera/diagnosis , Cholera/epidemiology , Diarrhea , Feces , Humans , Mice
12.
Cell Rep ; 37(12): 110147, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34936880

ABSTRACT

Pathogenic bacteria can rapidly respond to stresses such as reactive oxygen species (ROS) using reversible redox-sensitive oxidation of cysteine thiol (-SH) groups in regulators. Here, we use proteomics to profile reversible ROS-induced thiol oxidation in Vibrio cholerae, the etiologic agent of cholera, and identify two modified cysteines in ArcA, a regulator of global carbon oxidation that is phosphorylated and activated under low oxygen. ROS abolishes ArcA phosphorylation but induces the formation of an intramolecular disulfide bond that promotes ArcA-ArcA interactions and sustains activity. ArcA cysteines are oxidized in cholera patient stools, and ArcA thiol oxidation drives in vitro ROS resistance, colonization of ROS-rich guts, and environmental survival. In other pathogens, such as Salmonella enterica, oxidation of conserved cysteines of ArcA orthologs also promotes ROS resistance, suggesting a common role for ROS-induced ArcA thiol oxidation in modulating ArcA activity, allowing for a balance of expression of stress- and pathogenesis-related genetic programs.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Cholera/microbiology , Proteome/metabolism , Repressor Proteins/metabolism , Salmonella enterica/metabolism , Sulfhydryl Compounds/metabolism , Vibrio cholerae/metabolism , Animals , Bacterial Proteins/metabolism , Cell Line , Cysteine/metabolism , Feces/microbiology , Female , Gene Expression Regulation, Bacterial , Humans , Mice , Oxidation-Reduction , Oxidative Stress , Phosphorylation , Proteomics/methods , Reactive Oxygen Species/metabolism , Salmonella Infections/microbiology , Vibrio cholerae/genetics
14.
Int J Health Geogr ; 20(1): 5, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33494756

ABSTRACT

BACKGROUND: The health burden in developing world informal settlements often coincides with a lack of spatial data that could be used to guide intervention strategies. Spatial video (SV) has proven to be a useful tool to collect environmental and social data at a granular scale, though the effort required to turn these spatially encoded video frames into maps limits sustainability and scalability. In this paper we explore the use of convolution neural networks (CNN) to solve this problem by automatically identifying disease related environmental risks in a series of SV collected from Haiti. Our objective is to determine the potential of machine learning in health risk mapping for these environments by assessing the challenges faced in adequately training the required classification models. RESULTS: We show that SV can be a suitable source for automatically identifying and extracting health risk features using machine learning. While well-defined objects such as drains, buckets, tires and animals can be efficiently classified, more amorphous masses such as trash or standing water are difficult to classify. Our results further show that variations in the number of image frames selected, the image resolution, and combinations of these can be used to improve the overall model performance. CONCLUSION: Machine learning in combination with spatial video can be used to automatically identify environmental risks associated with common health problems in informal settlements, though there are likely to be variations in the type of data needed for training based on location. Success based on the risk type being identified are also likely to vary geographically. However, we are confident in identifying a series of best practices for data collection, model training and performance in these settings. We also discuss the next step of testing these findings in other environments, and how adding in the simultaneously collected geographic data could be used to create an automatic health risk mapping tool.


Subject(s)
Machine Learning , Neural Networks, Computer , Animals , Data Collection , Haiti , Humans , Risk Factors
15.
ACS Appl Mater Interfaces ; 12(42): 47278-47288, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32990431

ABSTRACT

Due to increasing reports of multidrug-resistant (MDR) Vibrio cholerae O1, the goal of this study was to characterize the in vitro antimicrobial activity of chitosan microparticles (CMs) to evaluate their potential as a novel therapeutic agent for cholera. We examined the antimicrobial activity of CMs against toxigenic V. cholerae O1 using direct enumeration, microscopy, and fluorescence microplate assays. Bacterial viability kinetics were measured with different concentrations of CMs, solution pH, and salt content using a live/dead staining technique. Growth inhibition of CM-exposed V. cholerae strains was conducted using a redox-sensitive stain and compared between wild-type and isogenic outer membrane (OM) mutants. CM concentrations above 0.1 wt % were sufficient to kill V. cholerae O1 suspensions with approximately 108 CFU/mL within 3 h. The nonviable cells demonstrated increased OM permeability that corresponded to gross morphological changes observed through scanning electron microscopy. CMs exhibited dose-dependent bactericidal activity that increased predictably at lower pH and decreased with salt addition. V. cholerae O1 strains lacking O-antigen were twice as susceptible to growth inhibition by CMs, whereas those with glycine modification to lipid A were ten times more resistant. We propose that CMs exert vibriocidal activity via electrostatic surface interactions between their positively charged amine groups and the negatively charged Gram-negative bacterial OM, resulting in disruption, increased permeability, decreased redox metabolism, and subsequent loss of cellular viability. Further research should be conducted in vivo to evaluate the efficacy of CMs as luminal agents to treat infections caused by MDR, toxigenic V. cholerae and other diarrheal pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Vibrio cholerae O1/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Carbohydrate Conformation , Cell Survival/drug effects , Chitosan/chemical synthesis , Chitosan/chemistry , Microbial Sensitivity Tests , Particle Size , Surface Properties , Vibrio cholerae O1/cytology , Vibrio cholerae O1/growth & development
16.
Microbiol Resour Announc ; 9(32)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32763930

ABSTRACT

Vibrio cholerae is a halophilic Gram-negative bacterial species and the etiological agent of cholera. Here, we report the draft genome sequence of an environmental V. cholerae strain, 2012Env-25, obtained using Oxford Nanopore Technologies (ONT) to provide insights into the ecology, evolution, and pathogenic potential of this bacterium.

17.
Proc Natl Acad Sci U S A ; 117(14): 7897-7904, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32229557

ABSTRACT

The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.


Subject(s)
Cholera/microbiology , Ecosystem , Phylogeny , Vibrio cholerae O1/classification , Asia/epidemiology , Cholera/epidemiology , Cholera/genetics , Cholera/pathology , Disease Outbreaks , Genome, Bacterial/genetics , Haiti/epidemiology , Humans , Vibrio cholerae O1/genetics , Vibrio cholerae O1/pathogenicity , Water Microbiology
18.
Front Microbiol ; 10: 2562, 2019.
Article in English | MEDLINE | ID: mdl-31787954

ABSTRACT

Toxigenic Vibrio cholerae strains, including strains in serogroups O1 and O139 associated with the clinical disease cholera, are ubiquitous in aquatic reservoirs, including fresh, estuarine, and marine environments. Humans acquire cholera by consuming water and/or food contaminated with the microorganism. The genome of toxigenic V. cholerae harbors a cholera-toxin producing prophage (CT-prophage) encoding genes that promote expression of cholera toxin. The CT-prophage in V. cholerae is flanked by two satellite prophages, RS1 and TLC. Using cell surface appendages (TCP and/or MSHA pili), V. cholerae can sequentially acquire TLC, RS1, and CTX phages by transduction; the genome of each of these phages ultimately integrates into V. cholerae's genome in a site-specific manner. Here, we showed that a non-toxigenic V. cholerae O1 biotype El Tor strain, lacking the entire RS1-CTX-TLC prophage complex (designated as RCT: R for RS1, C for CTX and T for TLC prophage, respectively), was able to acquire RCT from donor genomic DNA (gDNA) of a wild-type V. cholerae strain (E7946) via chitin-induced transformation. Moreover, we demonstrated that a chitin-induced transformant (designated as AAS111) harboring RCT was capable of producing cholera toxin. We also showed that recA, rather than xerC and xerD recombinases, promoted the acquisition of RCT from donor gDNA by the recipient non-toxigenic V. cholerae strain. Our data document the existence of an alternative pathway by which a non-toxigenic V. cholerae O1 strain can transform to a toxigenic strain by using chitin induction. As chitin is an abundant natural carbon source in aquatic reservoirs where V. cholerae is present, chitin-induced transformation may be an important driver in the emergence of new toxigenic V. cholerae strains.

19.
Article in English | MEDLINE | ID: mdl-30841596

ABSTRACT

Diffusion of cholera and other diarrheal diseases in an informal settlement is a product of multiple behavioral, environmental and spatial risk factors. One of the most important components is the spatial interconnections among water points, drainage ditches, toilets and the intervening environment. This risk is also longitudinal and variable as water points fluctuate in relation to bacterial contamination. In this paper we consider part of this micro space complexity for three informal settlements in Port au Prince, Haiti. We expand on more typical epidemiological analysis of fecal coliforms at water points, drainage ditches and ocean sites by considering the importance of single point location fluctuation coupled with recording micro-space environmental conditions around each sample site. Results show that spatial variation in enteric disease risk occurs within neighborhoods, and that while certain trends are evident, the degree of individual site fluctuation should question the utility of both cross-sectional and more aggregate analysis. Various factors increase the counts of fecal coliform present, including the type of water point, how water was stored at that water point, and the proximity of the water point to local drainage. Some locations fluctuated considerably between being safe and unsafe on a monthly basis. Next steps to form a more comprehensive contextualized understanding of enteric disease risk in these environments should include the addition of behavioral factors and local insight.


Subject(s)
Cholera/epidemiology , Diarrhea/epidemiology , Cities , Geographic Information Systems , Haiti , Humans , Risk Factors
20.
Analyst ; 144(1): 331-341, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30406227

ABSTRACT

Piperazine appended naphthalimide-BODIPYs (NPB1-NPB4) exhibiting solvatochromism and aggregation-induced emission with a large Stokes shift (up to 146 nm) have been described. Separation of naphthalimide and BODIPY fluorophores by piperazine in these conjugates creates a donor-acceptor system and induces twisted intramolecular charge transfer, in addition to photoinduced electron transfer. The crucial role of naphthalimide, the alkyl chain length, the piperazine ring, and the solid-state packing on AIE has been extensively investigated by various studies. Superior cell permeability coupled with bio-compatibility of these conjugates offers a unique opportunity for their potential applications in live cell lysosomal tracking.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Lysosomes/metabolism , Naphthalimides/chemistry , Piperazines/chemistry , Boron Compounds/chemical synthesis , Boron Compounds/radiation effects , Boron Compounds/toxicity , Fluorescence , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/radiation effects , Fluorescent Dyes/toxicity , HeLa Cells , Humans , Hydrogen-Ion Concentration , Light , Molecular Structure , Naphthalimides/chemical synthesis , Naphthalimides/radiation effects , Naphthalimides/toxicity , Piperazines/chemical synthesis , Piperazines/radiation effects , Piperazines/toxicity , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...