Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cureus ; 16(4): e59385, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38694651

ABSTRACT

The field of organ transplantation, particularly heart transplantation, has brought to light interesting phenomena challenging traditional understandings of memory, identity, and consciousness. Studies indicate that heart transplant recipients may exhibit preferences, emotions, and memories resembling those of the donors, suggesting a form of memory storage within the transplanted organ. Mechanisms proposed for this memory transfer include cellular memory, epigenetic modifications, and energetic interactions. Moreover, the heart's intricate neural network, often referred to as the "heart brain," communicates bidirectionally with the brain and other organs, supporting the concept of heart-brain connection and its role in memory and personality. Additionally, observations from hemispherectomy procedures highlight the brain's remarkable plasticity and functional preservation beyond expectations, further underscoring the complex interplay between the brain, body, and identity. However, ethical and philosophical questions regarding the implications of these findings, including the definition of death and the nature of personal identity, remain unresolved. Further interdisciplinary research is needed to unravel the intricacies of memory transfer, neuroplasticity, and organ integration, offering insights into both organ transplantation and broader aspects of neuroscience and human identity. Understanding these complexities holds promise for enhancing patient care in organ transplantation and deepens our understanding of fundamental aspects of human experience and existence.

2.
Redox Biol ; 1: 457-66, 2013.
Article in English | MEDLINE | ID: mdl-24191241

ABSTRACT

Mn(III) N-alkylpyridylporphyrins (MnPs) have demonstrated protection in various conditions where increased production of reactive oxygen/reactive nitrogen species (ROS/RNS), is a key pathological factors. MnPs can produce both pro-oxidative and antioxidative effects depending upon the cellular redox environment that they encounter. Previously we reported (Free Radic. Res. 39: 81-8, 2005) that when the treatment started at the onset of diabetes, Mn(III) meso-tetrakis(N-methylpyridinium-2-yl)porphyrin, MnTM-2-PyP(5+) suppressed diabetes-induced oxidative stress. Diabetes, however, is rarely diagnosed at its onset. The aim of this study was to investigate if MnTM-2-PyP(5+) can suppress oxidative damage and prevent diabetic complications when administered more than a week after the onset of diabetes. Diabetes was induced by streptozotocin. The MnP-based treatment started 8 days after the onset of diabetes and continued for 2 months. The effect of the treatment on activities of glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase, glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and glyoxalases I and II as well as malondialdehyde and GSH/GSSG ratio were determined in kidneys. Kidney function was assessed by measuring lysozyme and total protein in urine and blood urea nitrogen. Vascular damage was evaluated by assessing vascular reactivity. Our data showed that delayed administration of MnTM-2-PyP(5+) did not protect against oxidative damage and did not prevent diabetic complications. Moreover, MnTM-2-PyP(5+) contributed to the kidney damage, which seems to be a consequence of its pro-oxidative action. Such outcome can be explained by advanced oxidative damage which already existed at the moment the therapy with MnP started. The data support the concept that the overall biological effect of a redox-active MnP is determined by (i) the relative concentrations of oxidants and reductants, i.e. the cellular redox environment and (ii) MnP biodistribution.


Subject(s)
Biomimetic Materials/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Kidney/physiopathology , Metalloporphyrins/administration & dosage , Animals , Biomimetic Materials/therapeutic use , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Diabetes Mellitus, Experimental/physiopathology , Drug Administration Schedule , Gene Expression Regulation/drug effects , Humans , Kidney/metabolism , Male , Metalloporphyrins/therapeutic use , Oxidative Stress/drug effects , Rats , Rats, Wistar , Streptozocin , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL