Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
J Enzyme Inhib Med Chem ; 38(1): 2220570, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37341389

ABSTRACT

Novel 5-deazaflavins were designed as potential anticancer candidates. Compounds 4j, 4k, 5b, 5i, and 9f demonstrated high cytotoxicity against MCF-7 cell line with IC50 of 0.5-190nM. Compounds 8c and 9g showed preferential activity against Hela cells (IC50: 1.69 and 1.52 µM respectively). However, compound 5d showed notable potency against MCF-7 and Hela cell lines of 0.1 nM and 1.26 µM respectively. Kinase profiling for 4e showed the highest inhibition against a 20 kinase panel. Additionally, ADME prediction studies exhibited that compounds 4j, 5d, 5f, and 9f have drug-likeness criteria to be considered promising antitumor agents deserving of further investigation. SAR study showed that substitutions with 2-benzylidene hydra zino have a better fitting into PTK with enhanced antiproliferative potency. Noteworthy, the incorporation of hydrazino or ethanolamine moieties at position 2 along with small alkyl or phenyl at N-10, respectively revealed an extraordinary potency against MCF-7 cells with IC50 values in the nanomolar range.


Subject(s)
Ethanolamine , Ethanolamines , Humans , HeLa Cells , Flavins
2.
Int J Pharm ; 623: 121923, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35750279

ABSTRACT

Metformin is a widely used first-line oral antidiabetic agent. TheFood and Drug Administration (FDA) confirmed the presence of the ofN-nitrosodimethylamine (NDMA) impurity, a carcinogenic, above the acceptable daily intake (ADI, 96 ng/day) in certain metformin products. The objective of the present study was to assess in-use stability of commercial metformin products for NDMA and dissolution quality attributes. Four immediate-release (M1-M4) and six extended-rerelease (M5-M10) metformin products were evaluated in the stability testing. All products were repacked in pharmacy vials and stored at 30 °C/75% RH for 12 weeks. Five products (M2, M3, M5, M7 and M10) had NDMA level above ADI limit (96 ng/day) before in-use stability exposure. NDMA in M2 (1164 ± 52.9 ng/tablet) and M3 (3776 ± 351.9 ng/tablet) products were 12 and 39 folds of ADI, respectively. Similarly, ER products, M5 (191 ± 94.1 ng/tablet), M7 (1473 ± 47.3 ng/tablet) and M10 (423 ± 55.8 ng/tablet) exhibited NDMA of 1.9, 15.3 and 4.4 folds of ADI, respectively. The impurity level significantly (p < 0.05) increased after 12-week stability exposure to 2.72, 2.47, 2.23 and 2.78 folds of initial values in M2, M3, M7 and M10. In summary, these findings suggested that carcinogenic impurity generation was affected by in-use stability condition exposure and it is expected that several more products currently in the market may also be recalled soon.


Subject(s)
Metformin , Dimethylnitrosamine , Hypoglycemic Agents , Solubility , Tablets
3.
Arch Pharm (Weinheim) ; 355(6): e2100327, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35285986

ABSTRACT

Two new series of coumarin and benzofuran derivatives were designed, synthesized, and assessed for their in vitro and in vivo antitumor activities against breast cancer. Compounds 8, 9, 14, 15, and 17 exhibited the best antiproliferative activities (IC50 : 0.07-2.94 µM) against the MCF-7 cell line, compared with lapatinib (IC50 : 4.69 µM). Compound 14, with the most potent cytotoxic activity against MCF-7 cells, was capable of enhancing preG1 apoptosis and triggering cell cycle arrest at the G2/M phase. The kinase inhibitory activity of compound 14 against a panel of 22 kinases was examined to reveal multikinase inhibition within -39% to -97%. Furthermore, compound 14 exhibited potent in vivo Ehrlich (mammary adenocarcinoma) tumor regression, positive caspase-3, and negative EGFR immunoreaction, and was capable of elevating the catalase level. The physicochemical properties and pharmacokinetic parameters of compound 14 were investigated in silico for its druglikeness.


Subject(s)
Antineoplastic Agents , Benzofurans , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis , Benzofurans/chemistry , Benzofurans/pharmacology , Cell Line, Tumor , Cell Proliferation , Coumarins/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
4.
J Pharm Sci ; 111(8): 2312-2321, 2022 08.
Article in English | MEDLINE | ID: mdl-35296412

ABSTRACT

The focus of present work was to synthesize prodrugs of dolutegravir (DTG) for ultra-long delivery purpose. The prodrug was synthesized by esterification of hydroxyl group with carboxyl group of fatty acid (lauric or myristic acid). The prodrugs were characterized by differential scanning calorimetry, X-ray powder diffraction, nuclear magnetic resonance, Fourier transformed infrared, near infrared-chemical imaging, pH-solubility, partition coefficient, and stability (solid and liquid). Stability studies were performed by exposing the powder drugs to 40°C/75% RH for three months and buffer solutions at room temperature for 72 h. The prodrugs and drug were formulated into in-situ implant using biodegradable polymer. Thermal, spectral, and diffractometric data indicated formation of new chemical and solid forms. Formation of prodrugs resulted in lowering of melting point of DTG from 191.1°C to 163.7 and 140.7°C for DTG-Laurate and DTG-Myristate prodrugs, respectively. A decrease in solubility of 18.2-115.9 and 124.5-1594.9 folds was observed for DTG-Laurate and DTG-Myristate, respectively compared to DTG. Similarly, the prodrugs were highly lipophilic compared to DTG. Solid-state and pH-stability profiles of DTG and prodrugs were comparable. Implant formulation released 60.1% in 77 days compared to 95.6% in 35 days in the case of DTG-Myristate and DTG, respectively. In summary, combining prodrug and drug delivery approaches can be utilized for delivering drug for ultra-long period.


Subject(s)
Prodrugs , Heterocyclic Compounds, 3-Ring , Laurates , Myristates , Myristic Acid , Oxazines , Piperazines , Powders , Prodrugs/chemistry , Pyridones , Solubility
5.
Article in English | MEDLINE | ID: mdl-33574882

ABSTRACT

4-O-Podophyllotoxin sulfamate derivatives were prepared using the natural lignan podophyllotoxin. The prepared compounds were afforded by reacting O-sulfonyl chloride podophyllotoxin with ammonia or aminoaryl/heteroaryl motif. Biological evaluation was performed in human breast cancer (MCF7), ovarian cancer (A2780), colon adenocarcinoma (HT29), and normal lung fibroblast (MRC5) cell lines. Compound 3 exhibited potent inhibitory activity and good selectivity margin. Compounds 2, 3, and 7 exerted apoptotic effect in MCF7 cells in a dose-dependent manner. The cytotoxicity of the verified compounds was inferior to that of podophyllotoxin.

6.
J Med Chem ; 63(24): 15906-15945, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33314925

ABSTRACT

HER2 kinase as a well-established target for breast cancer (BC) therapy is associated with aggressive clinical outcomes; thus, herein we present structural optimization for HER2-selective targeting. HER2 profiling of the developed derivatives demonstrated potent and selective inhibitions (IC50: 5.4-12 nM) compared to lapatinib (IC50: 95.5 nM). Favorably, 17d exhibited minimum off-target kinase activation. NCI-5-dose screening revealed broad-spectrum activities (GI50: 1.43-2.09 µM) and 17d had a remarkable selectivity toward BC. Our compounds revealed significant selective and potent antiproliferative activities (∼20-fold) against HER2+ (AU565, BT474) compared to HER2(-) cells. At 0.1 IC50, 15i, 17d, and 25b inhibited pERK1/2 and pAkt by immunoblotting. Furthermore, 17d demonstrated potent in vivo tumor regression against the BT474 xenograft model. Notably, a metastasis case was observed in the vehicle but not in the test mice groups. CD-1 mice metabolic stability assay revealed high stability and low intrinsic clearance of 17d (T1/2 > 145 min and CLint(mic) < 9.6 mL/min/kg).


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Design , Lapatinib/chemistry , Molecular Targeted Therapy , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Animals , Apoptosis , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , In Vitro Techniques , Mice , Mice, Nude , Receptor, ErbB-2/metabolism , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
ACS Omega ; 5(30): 18872-18886, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775889

ABSTRACT

The vascular endothelial growth factor receptor 2 (VEGFR2) and c-mesenchymal epithelial transition factor (c-Met) are members of receptor tyrosine kinases which have a crucial role in the process of angiogenesis. Isatin moiety is a versatile group that is shared in many compounds targeting both c-Met and VEGFR2 kinases. In this study, we designed and synthesized different derivatives of substituted 3-(triazolo-thiadiazin-3-yl)indolin-2-one derivatives (6a-y) as dual inhibitors for c-Met and VEGFR2 enzymes. Eight compounds 6a, 6b, 6e, 6l, 6n, 6r, 6v, and 6y were assessed for their anticancer activities against a panel of 58 cancer cell lines according to the US-NCI protocol. Compound 6b revealed the most effective antiproliferative potency (GI %), with broad-spectrum activity against different subpanels of the most NCI 58 tumor cell lines. An in vivo hen's egg-chorioallantoic membrane (HET-CAM) angiogenic study was carried out for 21 compounds 6a, b, d, f, h, i, k-o, t, and 6x to check their mortality and toxicity. At 100 µM concentration, all compounds produced 100% mortality of the chick embryos. At 40 µM concentration, 13 compounds did not exhibit any detectable mortality (nontoxic) and revealed a potent antiangiogenic effect. Seven compounds 6b, 6d, 6f, 6n, 6o, 6t, and 6x significantly decreased the number of blood vessels, and compound 6b was the most effective antiangiogenic agent comparable to dexamethasone. Molecular docking studies were conducted for compound 6b to investigate its mode of interaction within the binding site of both c-Met and VEGFR2 kinases.

8.
Cancers (Basel) ; 12(8)2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32824235

ABSTRACT

Although integrin alpha 2 subunit (ITGA2) mediates cancer progression and metastasis, its transfer by exosomes has not been investigated in prostate cancer (PCa). We aimed to determine the role of exosomal ITGA2 derived from castration-resistant PCa (CRPC) cells in promoting aggressive phenotypes in androgen receptor (AR)-positive cells. Exosomes were co-incubated with recipient cells and tested for different cellular assays. ITGA2 was enriched in exosomes derived from CRPC cells. Co-culture of AR-positive cells with CRPC-derived exosomes increased their proliferation, migration, and invasion by promoting epithelial-mesenchymal transition, which was reversed via ITGA2 knockdown or inhibition of exosomal uptake by methyl-ß-cyclodextrin (MßCD). Ectopic expression of ITGA2 reproduced the effect of exosomal ITGA2 in PCa cells. ITGA2 transferred by exosomes exerted its effect within a shorter time compared to that triggered by its endogenous expression. The difference of ITGA2 protein expression in localized tumors and those with lymph node metastatic tissues was indistinguishable. Nevertheless, its abundance was higher in circulating exosomes collected from PCa patients when compared with normal subjects. Our findings indicate the possible role of the exosomal-ITGA2 transfer in altering the phenotype of AR-positive cells towards more aggressive phenotype. Thus, interfering with exosomal cargo transfer may inhibit the development of aggressive phenotype in PCa cells.

9.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481639

ABSTRACT

Protein tyrosine kinases (PTKs) are the most potential therapeutic targets for cancer. Herein, we present a sound rationale for synthesis of a series of novel 2-(methylthio), 2-(substituted alkylamino), 2-(heterocyclic substituted), 2-amino, 2,4-dioxo and 2-deoxo-5-deazaalloxazine derivatives by applying structure-based drug design (SBDD) using AutoDock 4.2. Their antitumor activities against human CCRF-HSB-2, KB, MCF-7 and HeLa have been investigated in vitro. Many 5-deazaalloxazine analogs revealed high selective activities against MCF-7 tumor cell lines (IC50: 0.17-2.17 µM) over HeLa tumor cell lines (IC50 > 100 µM). Protein kinase profiling revealed that compound 3h induced multi- targets kinase inhibition including -43% against (FAK), -40% against (CDKI) and -36% against (SCR). Moreover, the Annexin-V/PI apoptotic assay elucidate that compound 3h showed 33% and potentially 140% increase in early and late apoptosis to MCF-7 cells respectively, compared to the control. The structure-activity relationship (SAR) and molecular docking study using PTK as a target enzyme for the synthesized 7-deazaalloaxazine derivatives were investigated as potential antitumor agents. The AutoDock binding affinities of the 5-deazaalloxazine analogs into c-kit PTK (PDB code: 1t46) revealed reasonable correlations between their AutoDock binding free energy and IC50.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Flavins/chemistry , HeLa Cells , Humans , MCF-7 Cells , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
10.
Cells ; 9(3)2020 02 28.
Article in English | MEDLINE | ID: mdl-32121073

ABSTRACT

Exosomes are nano-membrane vesicles that various cell types secrete during physiological and pathophysiological conditions. By shuttling bioactive molecules such as nucleic acids, proteins, and lipids to target cells, exosomes serve as key regulators for multiple cellular processes, including cancer metastasis. Recently, microvesicles have emerged as a challenge in the treatment of prostate cancer (PCa), encountered either when the number of vesicles increases or when the vesicles move into circulation, potentially with an ability to induce drug resistance, angiogenesis, and metastasis. Notably, the exosomal cargo can induce the desmoplastic response of PCa-associated cells in a tumor microenvironment (TME) to promote PCa metastasis. However, the crosstalk between PCa-derived exosomes and the TME remains only partially understood. In this review, we provide new insights into the metabolic and molecular signatures of PCa-associated exosomes in reprogramming the TME, and the subsequent promotion of aggressive phenotypes of PCa cells. Elucidating the molecular mechanisms of TME reprogramming by exosomes draws more practical and universal conclusions for the development of new therapeutic interventions when considering TME in the treatment of PCa patients.


Subject(s)
Exosomes/metabolism , Prostatic Neoplasms/pathology , Animals , Exosomes/immunology , Humans , Immunomodulation , Male , Models, Biological , Neoplasm Metastasis , Tumor Microenvironment
11.
Sci Rep ; 9(1): 14197, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578454

ABSTRACT

Although the utilization of selective BRAFV600E inhibitors is associated with improved overall survival in patients with metastatic melanoma, a growing challenge of drug resistance has  emerged. CDC7 has been shown to be overexpressed and associated with poor prognosis in various cancers including melanoma. Thus, we aimed to elucidate the biological role of CDC7 in promoting Vemurafenib resistance and the anticipated benefits of dual targeting of BRAFV600E and CDC7 in melanoma cells. We performed exosomes-associated microRNA profiling and functional assays to determine the role of CDC7 in drug resistance using Vemurafenib-sensitive and resistant melanoma cells. Our results demonstrated that Vemurafenib-resistant cells exhibited a persistent expression of CDC7 in addition to prolonged activity of MCM2 compared to drug-sensitive cells. Reconstitution of miR-3613-3p in resistant cells downregulated CDC7 expression and reduced the number of colonies. Treatment of cells with low concentrations of CDC7 inhibitor TAK-931 sensitized resistant cells to Vemurafenib and reduced the number of cell colonies. Taken together, CDC7 overexpression and downregulation of miR-3613-3p were associated with Vemurafenib resistance in BRAFV600E- bearing melanoma cells. Dual targeting of CDC7 and BRAFV600E reduced the development of resistance against Vemurafenib. Further studies are warranted to investigate the clinical effect of targeting CDC7 in metastatic melanoma.


Subject(s)
Cell Cycle Proteins/genetics , Melanoma/drug therapy , MicroRNAs/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Melanoma/genetics , Middle Aged , Minichromosome Maintenance Proteins/drug effects , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Sulfonamides/pharmacology , Vemurafenib/adverse effects
12.
Bioorg Med Chem ; 27(7): 1308-1319, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30792101

ABSTRACT

Two new series of furochromone and benzofuran derivatives were designed, synthesized and evaluated for their in vitro anticancer activity against MCF-7 and MDA231 breast cancer cell lines. Compounds 5, 6, 7, 9, 15a, 16, 17a and 18 exhibited the best antiproliferative activities with IC50 values ranging from 1.19 to 2.78 µM against MCF-7 superior to lapatinib as reference standard (IC50; 4.69 µM). Compounds 15a and 18 revealed significant cytotoxic activity against MCF-7 and MDA231, therefore their inhibitory potencies against p38α MAP kinase were evaluated. Remarkably they exhibited significant IC50 of 0.04 µM comparable to SB203580 (IC50; 0.50 µM) as a reference standard. These promising results of cytotoxic activity and significant inhibition of p38α MAP kinase, were confirmed by exploring the effect of benzofuran derivative (18) on the apoptotic induction and cell cycle progression of MCF-7 cell line. Compound 18 induced preG1 apoptosis and cell growth arrest at G2/M phase preventing the mitotic cycle. Moreover it activated the caspase-7 which executes apoptosis. Molecular docking study was carried out using GOLD program to predict the mode of binding interaction of the synthesized compounds into the target p38α MAPK. Additionally, the physicochemical properties and ADME parameters of compound 18 were examined in silico to investigate its drug-likeness.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Breast Neoplasms/drug therapy , Drug Design , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biological Products/chemical synthesis , Biological Products/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , MCF-7 Cells , Mitogen-Activated Protein Kinase 14/metabolism , Models, Molecular , Molecular Structure , Oxygen/chemistry , Oxygen/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
13.
Sci Rep ; 8(1): 16335, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397274

ABSTRACT

Molecular mechanisms underlying the health disparity of prostate cancer (PCa) have not been fully determined. In this study, we applied bioinformatic approach to identify and validate dysregulated genes associated with tumor aggressiveness in African American (AA) compared to Caucasian American (CA) men with PCa. We retrieved and analyzed microarray data from 619 PCa patients, 412 AA and 207 CA, and we validated these genes in tumor tissues and cell lines by Real-Time PCR, Western blot, immunocytochemistry (ICC) and immunohistochemistry (IHC) analyses. We identified 362 differentially expressed genes in AA men and involved in regulating signaling pathways associated with tumor aggressiveness. In PCa tissues and cells, NKX3.1, APPL2, TPD52, LTC4S, ALDH1A3 and AMD1 transcripts were significantly upregulated (p < 0.05) compared to normal cells. IHC confirmed the overexpression of TPD52 (p = 0.0098) and LTC4S (p < 0.0005) in AA compared to CA men. ICC and Western blot analyses additionally corroborated this observation in PCa cells. These findings suggest that dysregulation of transcripts in PCa may drive the disparity of PCa outcomes and provide new insights into development of new therapeutic agents against aggressive tumors. More studies are warranted to investigate the clinical significance of these dysregulated genes in promoting the oncogenic pathways in AA men.


Subject(s)
Black or African American/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/ethnology , Prostatic Neoplasms/genetics , Adult , Black or African American/statistics & numerical data , Cell Line, Tumor , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology , Signal Transduction/genetics , White People/genetics , White People/statistics & numerical data
14.
Eur J Med Chem ; 152: 31-52, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29684708

ABSTRACT

Protein kinases are promising therapeutic targets for cancer therapy. Here, we applied multiple approaches to optimize the potency and selectivity of our reported alloxazine scaffold. Flexible moieties at position 2 of the hetero-tricyclic system were incorporated to fit into the ATP binding site and extend to the adjacent allosteric site and selectively inhibit protein kinases. This design led to potential selective inhibition of ABL1, CDK1/Cyclin A1, FAK, and SRC kinase by 30-59%. Cytotoxicity was improved by ∼50 times for the optimized lead (10b; IC50 = 40 nM) against breast cancer (MCF-7) cells. Many compounds revealed potential cytotoxicity against ovarian (A2780) and colon carcinoma (HCT116) cells of ∼10-30 time improvement (IC50 5-17 nM). The results of the Annexin-V/PI apoptotic assay demonstrated that many compounds induced significantly early (89-146%) and a dramatically late (556-1180%) cell death in comparison to the vehicle control of MCF-7 cells. SAR indicated that 5-deazaalloxazines have a higher selectivity for Abl-1 and FAK kinases than alloxazines. The correlations between GoldScore fitness into FAK and SRC kinases and IC50 against MCF-7 and A2780 cells were considerable (R2: 0.86-0.98).


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Flavins/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Flavins/chemical synthesis , Flavins/chemistry , Humans , MCF-7 Cells , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
15.
Eur J Med Chem ; 144: 859-873, 2018 Jan 20.
Article in English | MEDLINE | ID: mdl-29316526

ABSTRACT

The development of checkpoint kinase 2 (Chk2) inhibitors for the treatment of cancer has been an ongoing and attractive objective in drug discovery. In this study, twenty-one feasible pyrazole-benzimidazole conjugates were synthesized to study their effect against Chk2 activity using Checkpoint Kinase Assay. The antitumor activity of these compounds was investigated using SRB assay. A potentiation effect of the synthesized Chk2 inhibitors was also investigated using the genotoxic anticancer drugs cisplatin and doxorubicin on breast carcinoma, (ER+) cell line (MCF-7). In vivo Chk2 and antitumor activities of 8d as a single-agent, and in combination with doxorubicin, were evaluated in breast cancer bearing animals induced by N-methylnitrosourea. The effect of 8d alone and in combination with doxorubicin was also studied on cell-cycle phases of MCF-7 cells using flow cytometry analysis. The results revealed their potencies as Chk2 inhibitors with IC50 ranges from 9.95 to 65.07 nM. Generally the effect of cisplatin or doxorubicin was potentiated by the effect of most of the compounds that were studied. The in vivo results indicated that the combination of 8d and doxorubicin inhibited checkpoint kinase activity more than either doxorubicin or 8d alone. There was a positive correlation between checkpoint kinase inhibition and the improvement observed in histopathological features. Single dose treatment with doxorubicin or 8d produced S phase cell cycle arrest whereas their combination created cell cycle arrest at G2/M from 8% in case of doxorubicin to 51% in combination. Gold molecular modelling studies displayed a high correlation to the biological results.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Checkpoint Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 2/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
16.
Bioorg Chem ; 76: 487-500, 2018 02.
Article in English | MEDLINE | ID: mdl-29310080

ABSTRACT

This study deals with synthesis of a new set of benzofuran and 5H-furo[3,2-g]chromone linked various heterocyclic functionalities using concise synthetic approaches aiming to gain new antiproliferative candidates against MCF-7 breast cancer cells of p38α MAP kinase inhibiting activity. The biological data proved the significant sensitivity of breast cancer cell lines MCF-7 towards most of the prepared compounds in comparison with doxorubicin. In addition, compounds IIa,b, Va,b, VIa,b, VIIa,b, VIIIa,b, XIc showed significant in vitro p38α MAPK inhibiting potency comparable to the reference standard SB203580. Cell cycle analysis and apoptosis detection data demonstrated that compound VIa induced G2/M phase arrest and apoptosis in MCF-7 cancer cells, in addition to its activation of the caspases-9 and -3. Gold molecular docking studies rationalized the highly acceptable correlation between the calculated docking scores of fitness and the biological data of p38α MAP kinase inhibition. The newly prepared benzofuran and 5H-furo[3,2-g]chromone derivatives might be considered as new promising nuclei in anti-breast cancer chemotherapeutics for further functionalization, optimization and in-depth biological studies.


Subject(s)
Antineoplastic Agents/pharmacology , Benzofurans/pharmacology , Chromones/pharmacology , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Benzofurans/chemical synthesis , Benzofurans/chemistry , Breast Neoplasms/drug therapy , Caspase 3/metabolism , Caspase 9/metabolism , Catalytic Domain , Chromones/chemical synthesis , Chromones/chemistry , Doxorubicin/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Imidazoles/pharmacology , MCF-7 Cells , Mitogen-Activated Protein Kinase 14/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/pharmacology
17.
Sci Rep ; 8(1): 1249, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352227

ABSTRACT

Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChRs) have potential therapeutic application in neuropathologies associated with decrease in function or loss of nAChRs. In this study, we characterize the pharmacological interactions of the nAChRs PAM, LY2087101, with the α4ß2 nAChR using mutational and computational analyses. LY2087101 potentiated ACh-induced currents of low-sensitivity (α4)3(ß2)2 and high-sensitivity (α4)2(ß2)3 nAChRs with similar potencies albeit to a different maximum potentiation (potentiation I max = ~840 and 450%, respectively). Amino acid substitutions within the α4 subunit transmembrane domain [e.g. α4Leu256 and α4Leu260 within the transmembrane helix 1 (TM1); α4Phe316 within the TM3; and α4Gly613 within TM4] significantly reduced LY2087101 potentiation of (α4)3(ß2)2 nAChR. The locations of these amino acid residues and LY2087101 computational docking analyses identify two LY2087101 binding sites: an intrasubunit binding site within the transmembrane helix bundle of α4 subunit at the level of α4Leu260/α4Phe316 and intersubunit binding site at the α4:α4 subunit interface at the level of α4Leu256/α4Ile315 with both sites extending toward the extracellular end of the transmembrane domain. We also show that desformylflustrabromine (dFBr) binds to these two sites identified for LY2087101. These results provide structural information that are pertinent to structure-based design of nAChR allosteric modulators.


Subject(s)
Hydrocarbons, Brominated/pharmacology , Indole Alkaloids/pharmacology , Molecular Docking Simulation , Receptors, Nicotinic/chemistry , Thiazoles/pharmacology , Thiophenes/pharmacology , Allosteric Regulation , Amino Acid Substitution , Animals , Binding Sites , Humans , Protein Binding , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Xenopus
18.
Eur J Med Chem ; 141: 306-321, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29031075

ABSTRACT

New ring-extended analogs of indomethacin were designed based on the structure of active binding site of both COX-1 and COX-2 isoenzymes and the interaction pattern required for selective inhibition of COX-2 to improve its selectivity against COX-2. The strategy adopted for designing the new inhibitors involved i) ring extension of indomethacin to reduce the possibility of analogs to be accommodated into the narrow hydrophobic tunnel of COX-1, ii) deletion of carboxylic acid to reduce the possibility of inhibitor to form salt bridge with Arg120 and eventually prevent COX-1 inhibition, and iii) introduction of methylsulfonyl group to increase the opportunity of the analogs to interact with the polar side pocket that's is crucial for inhibition process of COX-2. The three series of tetrahydrocarbazoles involving 4, 5, 9, 10 and 12 were synthesized in quantitative yields adopting limited number of reaction steps, and applying laboratory friendly reaction conditions. In vitro and in vivo assays for data profiling the new candidates revealed the significant improvement in the potency and selectivity against COX-2 of 6-methoxytetrahydrocarbazole 4 (IC50 = 0.97 µmol) to verify the effect of ring extension in comparison to indomethacin (IC50 = 2.63 µmol), and 6-methylsulfonyltetrahydrocarbazole 10a (IC50 = 0.28 µmol) to verify the effect of ring extension and introduction of methylsulfonyl group. 9-(4-chlorobenzoyl)-6-(methylsulfonyl)-1,2,3,9-tetrahydro-4H-carbazol-4-one 12a showed the most potential and selective activity against COX-2 (IC50 = 0.23 µmol) to be with superior potency to Celecoxib (IC50 = 0.30 µmol). Consistently, 12a was the most active with all the other anti-inflammatory test descriptors and its activity in diminishing the PGE2 with the other analogs confirmed the elaboration of new class of selective COX-2 inhibitors beyond the diarylsulfonamides as a previously common class of selective COX-2 inhibitors. Molecular docking study revealed the high binding score of compound 12a (-30.78 kcal/mol), with less clash contribution (7.2) that is close to indomethacin. Also, 12a showed low conformation entropy score (1.40). Molecular dynamic (MD) simulation identified the equilibrium of both potential and kinetic energies.


Subject(s)
Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Drug Discovery , Indomethacin/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Indomethacin/analogs & derivatives , Indomethacin/chemistry , Molecular Dynamics Simulation , Molecular Structure , Structure-Activity Relationship
19.
Bioorg Med Chem ; 25(20): 5637-5651, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28916158

ABSTRACT

A novel set of pyrrolizine-5-carboxamides has been synthesized and evaluated for their anticancer potential against human breast MCF-7, lung carcinoma A549 and hepatoma Hep3B cancer cell lines. Compound 10c was the most active against MCF-7 with IC50 value of 4.72µM, while compound 12b was the most active against A549 and Hep3B cell lines. Moreover, kinases/COXs inhibition and apoptosis induction were suggested as potential molecular mechanisms for the anticancer activity of the novel pyrrolizines based on their structural features. The new compounds significantly inhibited COX-1 and COX-2 with IC50 values in the ranges of 5.78-11.96µM and 0.1-0.78µM, respectively with high COX-2 selectivity over COX-1. Interestingly, the most potent compound in MTT assay, compound 12b, exhibited high inhibitory activity against COX-2 with selectivity index (COX-1/COX-2)>100. Meanwhile, compound 12b displayed weak to moderate inhibition of six kinases with inhibition% (7-20%) compared to imatinib (inhibition%=1-38%). The results of cell cycle analysis, annexin V PI/FITC apoptosis assay and caspase-3/7 assay revealed that compound 12b has the ability to induce apoptosis. The docking results of compound 12b into the active sites of COXs, ALK1 and Aurora kinases indicated that it fits nicely inside their active sites. Overall, the current study highlighted the significant anticancer activity of the newly synthesized pyrrolizines with a potential multi-targeted mechanism which could serve as a base for future studies and further structural optimization into potential anticancer agents.


Subject(s)
Apoptosis/drug effects , Drug Design , Neoplasms/drug therapy , Pyrroles/chemical synthesis , Pyrroles/pharmacology , A549 Cells , Amides/chemical synthesis , Amides/chemistry , Amides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Azepines/chemical synthesis , Azepines/chemistry , Azepines/pharmacology , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Pyrroles/chemistry
20.
Eur J Med Chem ; 134: 392-405, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28433679

ABSTRACT

Activated checkpoint kinase 2 (Chk2) is a tumor suppressor as one of the main enzymes that affect the cell cycle. 2-Biarylbenzimidazoles are potent selective class of Chk2 inhibitors; the structure-based design was applied to synthesize a new series of this class with replacing the lateral aryl group by substituted pyrazoles. Ten pyrazole-benzimidazole conjugates from the best fifty candidates according to docking programs have been subjected to chemical synthesis in this study. The activities of the conjugates 5-14 as checkpoint kinase inhibitors and as antitumor alone and in combination with genotoxic drugs were evaluated. The effect of compounds 7 and 12 on cell-cycle phases was analyzed by flow cytometry analysis. Antitumor activity of compounds 7 and 12 as single-agents and in combinations with doxorubicin was assessed in breast cancer bearing animals induced by MNU. The Results indicated that compounds 5-14 inhibited Chk2 activity with high potency (IC50 52.8 nM-5.5 nM). The cytotoxicity of both cisplatin and doxorubicin were significantly potentiated by the most of the conjugates against MCF-7 cell lines. Compounds 7 and 12 and their combinations with doxorubicin induced the cell cycle arrest in MCF-7 cells. Moreover, compound 7 exhibited marked higher antitumor activity as a single agent in animals than it's combination with doxorubicin or doxorubicin alone. The combination of compound 12 with doxorubicin was greatly effective on animal than their single-dose treatment. In conclusion, pyrazole-benzimidazole conjugates are highly active Chk2 inhibitors that have anticancer activity and potentiate activity of genotoxic anticancer therapies and deserve further evaluations.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Breast Neoplasms/drug therapy , Breast/drug effects , Checkpoint Kinase 2/antagonists & inhibitors , Pyrazoles/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Breast/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Cycle/drug effects , Checkpoint Kinase 2/metabolism , DNA Damage/drug effects , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Female , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...