Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
3.
Curr Pharm Des ; 24(13): 1395-1404, 2018.
Article in English | MEDLINE | ID: mdl-29384057

ABSTRACT

Quinazoline is an aromatic bicyclic compound exhibiting several pharmaceutical and biological activities. This study was conducted to investigate the potential wound healing properties of Synthetic Quinazoline Compound (SQC) on experimental rats. The toxicity of SQC was determined by MTT cell proliferation assay. The healing effect of SQC was assessed by in vitro wound healing scratch assay on the skin fibroblast cells (BJ-5ta) and in vivo wound healing experiment of low and high dose of SQC on adult Sprague-Dawley rats compared with negative (gum acacia) and positive control (Intrasite-gel). Hematoxylin and Eosin (H&E), Masson's Trichrome (MT) staining and immunohistochemistry analysis were performed to evaluate the histopathological alterations and proteins expression of Bax and Hsp70 on the wound tissue after 10 days. In addition, levels of antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase), and malondialdehyde (MDA) were measured in wound tissue homogenates. The SQC significantly enhanced BJ-5ta cell proliferation and accelerated the percentage of wound closure, with less scarring, increased fibroblast and collagen fibers and less inflammatory cells compared with the negative control. The compound also increases endogenous enzymes and decline lipid peroxidation in wound homogenate.


Subject(s)
Quinazolines/chemical synthesis , Quinazolines/pharmacology , Wound Healing/drug effects , Administration, Topical , Animals , Male , Molecular Structure , Rats , Rats, Sprague-Dawley , Schiff Bases/administration & dosage , Schiff Bases/pharmacology
4.
RSC Adv ; 8(68): 38995-39004, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-35558311

ABSTRACT

A new series of acridine based imidazolium salts was synthesized and evaluated for in vitro cytotoxicity against human cancer cell lines by an MTT assay. The synthesis applied a coupling of imidazoles with 9-chloroacridines, which originated from an Ullmann condensation of a 2-chloro-benzoic acid with an aniline. The target compounds were obtained in high yields. The DPPH assay indicated considerable antioxidant activity for target compounds with simple and short alkyl chains on the imidazole, while increasing chain length and the introduction of an additional π-electron system in most cases reduced the activity. All compounds exhibited low biotoxicity against non-cancerous cell lines, whereas a few compounds showed promising anticancer activity. Unlike for the reference drugs Tamoxifen and Paclitaxel, the anticancer activity of acridine imidazolium ions is specific for only selected cancer types. Reasonable fluorescent behaviour of the products provide potential for visualization of the distribution of active drugs in tissue.

6.
Drug Des Devel Ther ; 11: 995-1009, 2017.
Article in English | MEDLINE | ID: mdl-28408799

ABSTRACT

Cibotium barometz is a pharmaceutical plant customarily used in traditional medicine in Malaysia for the treatment of different diseases, such as gastric ulcer. The gastroprotective effect of C. barometz leaves against ethanol-induced gastric hemorrhagic abrasions in Sprague Dawley rats has been evaluated in terms of medicinal properties. Seven groups of rats (normal control and ulcerated control groups, omeprazole 20 mg/kg, 62.5, 125, 250, and 500 mg/kg of C. barometz correspondingly) were used in antiulcer experiment and pretreated with 10% Tween 20. After 1 hour, the normal group was orally administered 10% Tween 20, whereas absolute alcohol was fed orally to ulcerated control, omeprazole, and experimental groups. Gastric's homogenate were assessed for endogenous enzymes activities. Stomachs were examined macroscopically and histologically. Grossly, the data demonstrated a significant decrease in the ulcer area of rats pretreated with plant extract in a dose-dependent manner with respect to the ulcerated group. Homogenates of the gastric tissue exhibited significantly increased endogenous enzymes activities in rats pretreated with C. barometz extract associated with the ulcerated control group. Histology of rats pretreated with C. barometz extract group using hematoxylin and eosin staining exhibited a moderate-to-mild disruption of the surface epithelium with reduction in submucosal edema and leucocyte infiltration in a dose-dependent manner. In addition, it showed heat shock protein70 protein up-expression and BCL2-associated X protein downexpression. These outcomes might be attributed to the gastroprotective and antioxidative effects of the plant.


Subject(s)
Anti-Ulcer Agents/therapeutic use , Ferns/chemistry , Plant Extracts/therapeutic use , Plant Leaves/chemistry , Stomach Ulcer/drug therapy , Acute Disease , Animals , Anti-Ulcer Agents/administration & dosage , Anti-Ulcer Agents/isolation & purification , Ethanol , Female , Male , Plant Extracts/administration & dosage , Plant Extracts/isolation & purification , Rats , Rats, Sprague-Dawley , Stomach Ulcer/chemically induced
7.
BMC Vet Res ; 13(1): 27, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28103938

ABSTRACT

BACKGROUND: Cibotium barometz is a medical herb used traditionally in the Malaysian peninsula for several ailments, including gastric ulcer. The aim of this study was assessment the anti-ulcer effects of C. barometz hair on ethanol-induced stomach hemorrhagic abrasions in animals. Seven groups of Sprague Dawley (SD) rats were administered 10% Tween 20 in the normal control and ulcer control groups, and omeprazole 20 mg/kg and 62.5, 125, 250, and 500 mg/kg of C. barometz hair extract in the experimental groups. After 60 min, the normal control group of rats was orally administered 10% Tween 20, while absolute ethanol was orally administered to the groups of ulcer control, omeprazole and experimental groups. Stomachs of the rats were examined macroscopically and histologically. Homogenates of stomachs were used to evaluate endogenous antioxidant enzyme activities. RESULTS: Rats pre-fed with plant extract presented a significant decrease in the sore area, increased pH of gastric contents and preserved stomach wall mucus compared to the ulcer group. Histologically, rats pre-fed with C. barometz hair extract showed mild to moderate disruptions of the surface epithelium while animals pre-fed with absolute ethanol showed severe disruptions of the stomach epithelium with edema and leucocyte penetration of the submucosal layer. A Periodic acid Schiff (PAS) staining revealed that each rat pre-treated with the plant extract displayed an intense uptake of stomach epithelial glycoprotein magenta color compared to the ulcer control group. Immunohistochemical analysis revealed that rats pre-fed with the plant extract showed an up-regulation of the heat shock protein 70 (HSP70) and down-regulation of Bax proteins compared to ulcer control rats. Homogenates of the stomach tissue demonstrated significant increases in the endogenous antioxidant enzymatic activity and decreased lipid peroxidation (MDA) in rats pre-treated with C. barometz hair extract compared with the ulcer control rats. In acute toxicity, the liver and kidney revealed no hepatotoxic or nephrotoxic effects histologically. CONCLUSIONS: The gastric cytoprotective action of C. barometz hair extract might be attributed to antioxidants, an increase in gastric pH, stomach mucus preservation, increased endogenous antioxidant enzymes, decreased lipid peroxidation, up-regulation of HSP70 and down-regulation of Bax proteins.


Subject(s)
Ethanol/toxicity , Ferns/chemistry , Plant Extracts/pharmacology , Stomach Ulcer/chemically induced , Animals , Antioxidants/pharmacology , Biphenyl Compounds , Dose-Response Relationship, Drug , Male , Medicine, Chinese Traditional , Phytotherapy , Picrates , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Rats, Sprague-Dawley , Stomach/drug effects , Stomach/pathology , Stomach Ulcer/prevention & control , Toxicity Tests
8.
Sci Rep ; 6: 38992, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27976692

ABSTRACT

In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/ß-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Humans , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/pathology
9.
Sci Rep ; 6: 26819, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27229938

ABSTRACT

Manganese is a crucial element for health. In this study, the gastroprotective efficacy of Mn (II) complex (MDLA) against acidified ethanol (HCl/Ethanol)-induced gastric ulceration in rats was evaluated. The animals were distributed into 5 groups. Groups 1 and 2 received carboxymethylcellulose (CMC), group 3 was pretreated with omeprazole, and groups 4 and 5 were given 10 and 20 mg/kg of MDLA, respectively. After one hour, CMC and HCl/Ethanol were given to groups 2-5 whilst the animals in group 1 were ingested with CMC. After sacrifice, gastric lesions were evaluated by wall mucus, gross appearance, histology, antioxidant enzymes and immunohistochemistry. Group 2 displayed severe gastric damage with a significant reduction in wall mucus. Conversely, gastric lesions were reduced in groups 3-5 by 85.72%, 56.51% and 65.93%, respectively. The rats in groups 3-5 showed up-regulation of heat shock protein 70 (Hsp70) with down-regulation of Bcl-2-associated protein x (Bax). Pretreatment with omeprazole or MDLA led to an increase in the uptake of Periodic Acid Schiff (PAS) stain in the glandular part of the gastric tissue, raised levels of prostaglandin E2 (PGE2) and superoxide dismutase (SOD), and a reduction in malondialdehyde (MDA) concentrations. These results suggested the gastroprotective action of Mn (II) complex.


Subject(s)
Anti-Ulcer Agents/administration & dosage , Anti-Ulcer Agents/toxicity , Manganese/administration & dosage , Manganese/toxicity , Stomach Ulcer/drug therapy , Animals , Anti-Ulcer Agents/chemistry , Ethanol/administration & dosage , Female , Gastric Mucosa/drug effects , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Male , Manganese/chemistry , Omeprazole/administration & dosage , Rats, Sprague-Dawley , Schiff Bases , Stomach Ulcer/chemically induced , Toxicity Tests, Acute
10.
PLoS One ; 11(3): e0151466, 2016.
Article in English | MEDLINE | ID: mdl-27019365

ABSTRACT

Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 µg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 µg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Flavonoids/pharmacology , Mitochondria/drug effects , Apoptosis/genetics , Artocarpus/chemistry , Blotting, Western , Caspase 3/metabolism , Caspase 8/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , Cytochromes c/metabolism , DNA Fragmentation/drug effects , Enzyme Activation/drug effects , Female , Flavonoids/chemistry , Flow Cytometry , Humans , Inhibitory Concentration 50 , Mitochondria/metabolism , Molecular Structure , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , S Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/genetics
11.
Phytomedicine ; 23(4): 406-16, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27002411

ABSTRACT

BACKGROUND: Cleistopholine is a natural alkaloid present in plants with numerous biological activities. However, cleistopholine has yet to be isolated using modern techniques and the mechanism by which this alkaloid induces apoptosis in cancer cells remains to be elucidated. HYPOTHESIS/PURPOSE: This study aims to isolate cleistopholine from the roots of Enicosanthellum pulchrum by using preparative-HPLC technique and explore the mechanism by which this alkaloid induces apoptosis in human ovarian cancer (CAOV-3) cells in vitro from 24 to 72 h. This compound may be developed as an anticancer agent that induces apoptosis in ovarian cancer cells. STUDY DESIGN/METHODS: Cytotoxicity was assessed via the cell viability assay and changes in cell morphology were observed via the acridine orange/propidium iodide (AO/PI) assay. The involvement of apoptotic pathways was evaluated through caspase analysis and multiple cytotoxicity assays. Meanwhile, early and late apoptotic events via the Annexin V-FITC and DNA laddering assays, respectively. The mechanism of apoptosis was explored at the molecular level by evaluating the expression of specific genes and proteins. In addition, the proliferation of CAOV-3-cells treated with cleistopholine was analysed using the cell cycle arrest assay. RESULTS: The IC50 of cleistopholine (61.4 µM) was comparable with that of the positive control cisplatin (62.8 µM) at 24 h of treatment. Apoptos is was evidenced by cell membrane blebbing, chromatin compression and formation of apoptotic bodies. The initial phase of apoptosis was detected at 24 h by the increase in Annexin V-FITC binding to cell membranes. A DNA ladder was formed at 48 h, indicating DNA fragmentation in the final phase of apoptosis. The mitochondria participated in the process by stimulating the intrinsic pathway via caspase 9 with a reduction in mitochondrial membrane potential (MMP) and an increase in cytochrome c release. Cell death was further validated through the mRNA and protein overexpression of Bax, caspase 3 and caspase 9 in the treated cells compared with the untreated cells. In contrast, Bcl-2, Hsp70 and survivin decreased in expression upon cleistopholine treatment. Cell cycle was arrested at the G0/G1 phase and cell population percentage significantly increased to 43.5%, 45.4% and 54.3% in time-dependent manner in the cleistopholine-treated CAOV-3 cells compared with the untreated cells at 24, 48 and 72 h respectively. CONCLUSION: The current study indicated that cleistopholine can be a potential candidate as a new drug to treat ovarian cancer disease.


Subject(s)
Annonaceae/chemistry , Anthraquinones/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Aza Compounds/pharmacology , Ovarian Neoplasms/metabolism , Plant Extracts/pharmacology , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Annexin A5/metabolism , Anthraquinones/isolation & purification , Anthraquinones/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Aza Compounds/isolation & purification , Aza Compounds/therapeutic use , Caspase 9/metabolism , Caspases/metabolism , Cell Cycle/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation , Cytochromes c/metabolism , DNA Fragmentation , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Phytotherapy , Plant Extracts/therapeutic use , Plant Roots
12.
Nat Prod Commun ; 10(9): 1541-2, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26594753

ABSTRACT

Seven isoquinoline alkaloids isolated from the bark of Actinodaphne macrophylla in this study demonstrated in vitro antiplasmodial activities against Plasmodium falciparum 3D7 with IC50 values of 0.08 µM, 0.05 µM, 1.18 µM, 3.11 µM, 0.65 µM, 0.26 µM, and 1.38 µM for cycleanine, 10-demethylxylopinine, reticuline, laurotetanine, bicuculine, α-hydrastine and anolobine, respectively, which are comparable with the reference standard, chloroquine. 10-Demethylxylopinine was found to be the most active of these compounds.


Subject(s)
Alkaloids/pharmacology , Antimalarials/pharmacology , Isoquinolines/pharmacology , Lauraceae/chemistry , Plant Bark/chemistry , Plant Stems/chemistry , Alkaloids/chemistry , Antimalarials/chemistry , Isoquinolines/chemistry , Plasmodium falciparum/drug effects
13.
Cell Physiol Biochem ; 37(5): 1997-2011, 2015.
Article in English | MEDLINE | ID: mdl-26584298

ABSTRACT

BACKGROUND/AIMS: Rauvolfia reflexa is a member of the Apocynaceae family. Plants from the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders Methods and Results: Two new indole alkaloids, rauvolfine C (1) and 3-methyl-10,11-dimethoxy-6-methoxycarbonyl-ß-carboline (2), along with five known, macusine B (3), vinorine (4), undulifoline (5), isoresrpiline (6) and rescinnamine (7) were isolated from the bark of Rauvolfia reflexa. Cholinesterase inhibitory assay and molecular docking were performed to get insight of the inhibitory activity and molecular interactions of the compounds. The compounds showed good to moderate cholinesterase inhibitory activity with IC50 values in the range of 8.06 to 73.23 µM. Compound 7 was found to be the most potent inhibitor of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Compounds 1, 2, 5 and 6 were found to be selective towards BChE, while compounds 3, 4 and 7 were dual inhibitors, having almost equal inhibitory activity on both AChE and BChE. Molecular docking revealed that compounds 6 and 7 interacted differently on AChE and BChE, by means of hydrophobic interactions and hydrogen bonding. In AChE, the indole moiety of both compounds interacted with the residues lining the peripheral anionic site, whereas in BChE, their methoxy groups are primarily responsible for the strong inhibitory activity via interactions with residues at the active site of the enzyme. CONCLUSION: Two new and five known indole alkaloids were isolated from R. reflexa. Among the compounds, 7 and 6 showed the most potent and promising cholinesterase inhibitory activity, worthy for further investigations.


Subject(s)
Acetylcholinesterase/chemistry , Butyrylcholinesterase/chemistry , Indole Alkaloids/chemistry , Rauwolfia/chemistry , Acetylcholinesterase/metabolism , Binding Sites , Butyrylcholinesterase/metabolism , Carbolines , Indole Alkaloids/isolation & purification , Indole Alkaloids/metabolism , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Plant Bark/chemistry , Plant Bark/metabolism , Protein Structure, Tertiary , Rauwolfia/metabolism
14.
J Ethnopharmacol ; 175: 229-40, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26342523

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The art of Ayurveda and the traditional healing system in India have reflected the ethnomedicinal importance of the plant Woodfordia fruticosa Kurtz, which demonstrates its vast usage in the Ayurvedic preparations as well as in the management of diabetes by the traditional healers. AIMS OF STUDY: The study aimed to ascertain the antidiabetic potential of W. fruticosa flower methanolic extract (WF) on Streptozotocin (STZ)-nicotinamide-induced diabetic rat model. MATERIALS AND METHODS: Diabetes was induced in Sprague Dawley (SD) rats by STZ-nicotinamide and thereafter diabetic rats were treated with three different doses of WF (100, 200 and 400mg/kg body weight) respectively and glibenclamide as a positive control. Biochemical parameters such as blood glucose, serum insulin and C-peptide levels were measured with oxidative stress markers. Furthermore, histology of liver and pancreas was carried out to evaluate glycogen content and ß-cell structures. Moreover, immunohistochemistry and western blot analysis were performed on kidney and pancreas tissues to determine renal Bcl-2, pancreatic insulin and glucose transporter (GLUT-2, 4) protein expression in all the experimental groups. RESULTS: The acute toxicity study showed non-toxic nature of all the three doses of WF. Further, studies on diabetic rats exhibited anti-hyperglycemic effects by upregulating serum insulin and C-peptide levels. Similarly, WF shown to ameliorate oxidative stress by downregulating LPO levels and augmenting the antioxidant enzyme (ABTS). Furthermore, histopathological analysis demonstrate recovery in the structural degeneration of ß-cells mass of pancreas tissue with increase in the liver glycogen content of the diabetic rats. Interestingly, protective nature of the extract was further revealed by the immunohistochemical study result which displayed upregulation in the insulin and renal Bcl-2 expression, the anti apoptosis protein. Moreover, western blot result have shown slight alteration in the GLUT-2 and GLUT-4 protein expression with the highest dose of WFc treatment, that might have stimulated glucose uptake in the pancreas and played an important role in attenuating the blood glucose levels. CONCLUSION: The overall study result have demonstrated the potential of WF in the management of diabetes and its related complications, thus warrants further investigation on its major compounds with in depth mechanistic studies at molecular level.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Plant Extracts/therapeutic use , Woodfordia , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Flowers , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 4/metabolism , Glycogen/metabolism , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/pathology , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Niacinamide , Oxidative Stress/drug effects , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Phytochemicals/analysis , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats, Sprague-Dawley , Streptozocin
15.
Int J Mol Sci ; 16(7): 15625-58, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26184167

ABSTRACT

Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.


Subject(s)
Acetogenins/chemistry , Annona/chemistry , Acetogenins/isolation & purification , Acetogenins/pharmacology , Annona/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Antioxidants/chemistry , Antioxidants/isolation & purification , Antioxidants/pharmacology , Apoptosis/drug effects , Central Nervous System/drug effects , Central Nervous System Agents/chemistry , Central Nervous System Agents/isolation & purification , Central Nervous System Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oils, Volatile/pharmacology
16.
Cell Physiol Biochem ; 36(3): 988-1003, 2015.
Article in English | MEDLINE | ID: mdl-26087920

ABSTRACT

BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models. METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8ß- hydroxyl- 4ß, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Gene Expression Regulation, Neoplastic , Lactones/pharmacology , Mammary Neoplasms, Experimental/drug therapy , Sesquiterpenes/pharmacology , Tanacetum/chemistry , Animals , Anticarcinogenic Agents/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p21/agonists , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/agonists , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , Humans , Lactones/isolation & purification , MCF-7 Cells , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasm Transplantation , Plant Extracts/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Sesquiterpenes/isolation & purification , Signal Transduction , bcl-2-Associated X Protein/agonists , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
17.
Carbohydr Res ; 412: 28-33, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26000863

ABSTRACT

A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.


Subject(s)
Glycosides/chemistry , Imidazoles/chemistry , Surface-Active Agents/chemistry , Cations/chemistry , Glycosides/chemical synthesis , Imidazoles/chemical synthesis , Surface-Active Agents/chemical synthesis
18.
Curr Pharm Des ; 21(23): 3417-26, 2015.
Article in English | MEDLINE | ID: mdl-25808938

ABSTRACT

The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 µg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Drug Design , Mitochondria/drug effects , Quinazolinones/chemical synthesis , Quinazolinones/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caspases/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Female , Humans , Inhibitory Concentration 50 , L-Lactate Dehydrogenase/metabolism , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Molecular Structure , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Time Factors
19.
PLoS One ; 10(3): e0121060, 2015.
Article in English | MEDLINE | ID: mdl-25798602

ABSTRACT

BACKGROUND: Zingiber zerumbet Smith is a perennial herb, broadly distributed in many tropical areas. In Malaysia, it's locally known among the Malay people as "lempoyang" and its rhizomes, particularly, is widely used in traditional medicine for the treatment of peptic ulcer disease beyond other gastric disorders. AIM OF THE STUDY: The aim of the current study is to evaluate the gastroprotective effect of zerumbone, the main bioactive compound of Zingiber zerumbet rhizome, against ethanol-induced gastric ulcer model in rats. MATERIALS AND METHODS: Rats were pre-treated with zerumbone and subsequently exposed to acute gastric ulcer induced by absolute ethanol administration. Following treatment, gastric juice acidity, ulcer index, mucus content, histological analysis (HE and PAS), immunohistochemical localization for HSP-70, prostaglandin E2 synthesis (PGE2), non-protein sulfhydryl gastric content (NP-SH), reduced glutathione level (GSH), and malondialdehyde level (MDA) were evaluated in ethanol-induced ulcer in vivo. Ferric reducing antioxidant power assay (FRAP) and anti-H. pylori activity were investigated in vitro. RESULTS: The results showed that the intragastric administration of zerumbone protected the gastric mucosa from the aggressive effect of ethanol-induced gastric ulcer, coincided with reduced submucosal edema and leukocyte infiltration. This observed gastroprotective effect of zerumbone was accompanied with a significant (p <0.05) effect of the compound to restore the lowered NP-SH and GSH levels, and to reduce the elevated MDA level into the gastric homogenate. Moreover, the compound induced HSP-70 up-regulation into the gastric tissue. Furthermore, zerumbone significantly (p <0.05) enhanced mucus production, showed intense PAS stain and maintained PG content near to the normal level. The compound exhibited antisecretory activity and an interesting minimum inhibitory concentration (MIC) against H. pylori strain. CONCLUSION: The results of the present study revealed that zerumbone promotes ulcer protection, which might be attributed to the maintenance of mucus integrity, antioxidant activity, and HSP-70 induction. Zerumbone also exhibited antibacterial action against H. pylori.


Subject(s)
Antioxidants/administration & dosage , Helicobacter pylori/drug effects , Sesquiterpenes/administration & dosage , Stomach Ulcer/prevention & control , Zingiberaceae/chemistry , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Ethanol , Gastric Juice/drug effects , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Rats , Sesquiterpenes/pharmacology , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism
20.
Drug Des Devel Ther ; 9: 1437-48, 2015.
Article in English | MEDLINE | ID: mdl-25792804

ABSTRACT

Enicosanthellum pulchrum is a tropical plant from Malaysia and belongs to the Annonaceae family. This plant is rich in isoquinoline alkaloids. In the present study, liriodenine, an isoquinoline alkaloid, was examined as a potential anticancer agent, particularly in ovarian cancer. Liriodenine was isolated by preparative high-performance liquid chromatography. Cell viability was performed to determine the cytotoxicity, whilst the detection of morphological changes was carried out by acridine orange/propidium iodide assay. Initial and late apoptosis was examined by Annexin V-fluorescein isothiocyanate and DNA laddering assays, respectively. The involvement of pathways was detected via caspase-3, caspase-8, and caspase-9 analyses. Confirmation of pathways was further performed in mitochondria using a cytotoxicity 3 assay. Apoptosis was confirmed at the protein level, including Bax, Bcl-2, and survivin, while interruption of the cell cycle was used for final validation of apoptosis. The result showed that liriodenine inhibits proliferation of CAOV-3 cells at 37.3 µM after 24 hours of exposure. Changes in cell morphology were detected by the presence of cell membrane blebbing, chromatin condensation, and formation of apoptotic bodies. Early apoptosis was observed by Annexin V-fluorescein isothiocyanate bound to the cell membrane as early as 24 hours. Liriodenine activated the intrinsic pathway by induction of caspase-3 and caspase-9. Involvement of the intrinsic pathway in the mitochondria could be seen, with a significant increase in mitochondrial permeability and cytochrome c release, whereas the mitochondrial membrane potential was decreased. DNA fragmentation occurred at 72 hours upon exposure to liriodenine. The presence of DNA fragmentation indicates the CAOV-3 cells undergo late apoptosis or final stage of apoptosis. Confirmation of apoptosis at the protein level showed overexpression of Bax and suppression of Bcl-2 and survivin. Liriodenine inhibits progression of the CAOV-3 cell cycle in S phase. These findings indicate that liriodenine could be considered as a promising anticancer agent.


Subject(s)
Annonaceae/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Aporphines/pharmacology , Cell Cycle/drug effects , Mitochondria/drug effects , Ovarian Neoplasms/drug therapy , Signal Transduction/drug effects , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Aporphines/chemistry , Aporphines/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mitochondria/metabolism , Ovarian Neoplasms/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...