Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Biomedicines ; 10(3)2022 Mar 20.
Article in English | MEDLINE | ID: mdl-35327524

ABSTRACT

The current study investigated the cytotoxic effect of ten sulfonamide-derived isatins, following molecular hybridization, based on the association principles, on hepatocellular carcinoma (HCC) HepG2 and Huh7 cell lines, compared for safety using human normal retina pigmented epithelial (RPE-1) cells. The ten compounds showed variable in vitro cytotoxicity on HepG2 and Huh7 cells, using the MTT assay. Four compounds (4/10) were highly cytotoxic to both HepG2 and HuH7. However, only 3 of these 4 were of the highest safety margin on RPE-1 cells in vitro and in the in vivo acute (14-day) oral toxicity study. These later, superior three compounds' structures are 3-hydroxy-3-(2-oxo-2-(p-tolyl)ethyl)-5-(piperidin-1-ylsulfonyl)indolin-2-one (3a), N-(4-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4b), and N-(3-(2-(2-oxo-5-(piperidin-1-ylsulfonyl)indolin-3-ylidene)acetyl)phenyl)acetamide (4c). The half-maximal inhibitory concentration (IC50) of the tested compounds (3a, 4b, and 4c) on HepG2 cells were approximately 16.8, 44.7, and 39.7 µM, respectively. The 3a, 4b, and 4c compounds significantly decreased the angiogenic marker epithelial growth factor receptor (EGFR) level and that was further confirmed via molecular docking inside the EFGR active site (PDB: 1M17). The binding free energies ranged between -19.21 and -21.74 Kcal/mol compared to Erlotinib (-25.65 Kcal/mol). The most promising compounds, 3a, 4b, and 4c, showed variable anticancer potential on "hallmarks of cancer", significant cytotoxicity, and apoptotic anti-angiogenic and anti-invasive effects, manifested as suppression of Bcl-2, urokinase plasminogen activation, and heparanase expression in HepG2-treated cells' lysate, compared to non-treated HepG2 cells. In conclusion, compound "3a" is highly comparable to doxorubicin regarding cell cycle arrest at G2/M, the pre-G0 phases and early and late apoptosis induction and is comparable to Erlotinib regarding binding to EGFR active site. Therefore, the current study could suggest that compound "3a" is, hopefully, the most safe and active synthesized isatin sulfonamide derivative for HCC management.

2.
Mini Rev Med Chem ; 21(1): 118-131, 2021.
Article in English | MEDLINE | ID: mdl-32560601

ABSTRACT

BACKGROUND: Thiazolopyrimidine analogues are versatile synthetic scaffold possessing wide spectrum of biological interests involving potential anticancer activity. OBJECTIVE: To report the synthesis of novel bromothiazolopyrimidine derivatives and the study of both molecular modeling and in-vitro anticancer activity. METHODS: Novel bromothiazolopyrimidine derivatives 5-18 have been prepared from 2-bromo-3-(4- chlorophenyl)-1-(3,4-dimethylphenyl)-propenone 3 as a key starting compound. The anti-cancer activities of the new compounds were evaluated against HepG2, MCF-7, A549 and HCT116 cell lines. RESULTS: The compounds 16, 17 and 18 showed cytotoxic and growth inhibitory activities on both colon and lung cells. The cytotoxic activities of the novel synthetic compounds 8, 9, 11, 16, 17 and 18 were due to CDC25 phosphatases inhibition as shown by the enzymatic binding assay. Although compounds 8, 9 and 11 have only demonstrated CDC25B phosphatases inhibition. CONCLUSION: The novel bromothiazolopyrimidine derivatives showed promising in vitro anticancer activities against colon cancer HCT116 and lung cancer A549 cell lines comparable to the anticancer drug doxorubicin.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrimidines/pharmacology , Thiazoles/pharmacology , cdc25 Phosphatases/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , cdc25 Phosphatases/metabolism
3.
Bioorg Chem ; 101: 103916, 2020 08.
Article in English | MEDLINE | ID: mdl-32559576

ABSTRACT

Based on the previous studies that revealed the valuable role of pyrazole scaffold in cancer management and VEGFR-2 inhibition, a new set of pyrazole conjugated with pyrazoline, triazolopyrimidine and pyrazolone moieties were synthesized and investigated for their anticancer efficiency against human breast cancer MCF-7. The anticancer screening revealed the significant sensitivity of breast carcinoma towards compounds 4b, 5c, 6c, 7b, 7c and 12c with IC50 values ranging from 16.50 - 26.73 µM in comparison with tamoxifen (IC50 = 23.31 µM). Moreover, the new analogues were further examined for their VEGFR-2 inhibitory activity, among the tested derivatives 5c, 6c, 7b, 7c and 12c displayed prominent inhibitory efficiency versus VEGFR-2 kinase with % inhibition ranging from 70 to 79%. Compounds 6c, 7c and 12c revealed inhibitory efficiency in nanomolar level with IC50 (913.51, 225.17 and 828.23 nM, respectively) comparing to sorafenib (IC50 = 186.54 nM). Flow cytometric analysis revealed that the promising compound 12c prompted pre-G1 apoptosis and cell growth cessation at G2/M phase and stimulated apoptosis via activation of caspase-3. Moreover, molecular docking study of the promising derivatives was performed to highlight their binding modes and interactions with the amino acid residues of VEGFR-2 enzyme.


Subject(s)
Breast Neoplasms/pathology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Apoptosis/drug effects , Caspase 3/metabolism , Cell Division/drug effects , Female , G2 Phase/drug effects , Humans , MCF-7 Cells , Molecular Docking Simulation
4.
Molecules ; 25(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053964

ABSTRACT

In this study, a novel series of 1,2-disubstituted benzo[d]imidazoles was rationally designed as VEGFR-2 inhibitors targeting hepatocellular carcinoma. Our design strategy is two-fold; it aimed first at studying the effect of replacing the 5-methylfuryl moiety of the well-known antiangiogenic 2-furylbenzimidazoles with an isopropyl moiety on the VEGFR-2 inhibitory activity and the cytotoxic activity. Our second objective was to further optimize the structures of the benzimidazole derivatives through elongation of the side chains at their one-position for the design of more potent type II-like VEGFR-2 inhibitors. The designed 1,2-disubstituted benzimidazoles demonstrated potent cytotoxic activity against the HepG2 cell line, reaching IC50 = 1.98 µM in comparison to sorafenib (IC50 = 10.99 µM). In addition, the synthesized compounds revealed promising VEGFR-2 inhibitory activity in the HepG2 cell line, e.g., compounds 17a and 6 showed 82% and 80% inhibition, respectively, in comparison to sorafenib (% inhibition = 92%). Studying the effect of 17a on the HepG2 cell cycle demonstrated that 17a arrested the cell cycle at the G2/M phase and induced a dose-dependent apoptotic effect. Molecular docking studies of the synthesized 1,2-disubstituted benzimidazoles in the VEGFR-2 active site displayed their ability to accomplish the essential hydrogen bonding and hydrophobic interactions for optimum inhibitory activity.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Design , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/chemistry , Benzimidazoles/chemical synthesis , Binding Sites , Carcinoma, Hepatocellular , Cell Cycle/drug effects , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
5.
Arch Pharm (Weinheim) ; 353(4): e1900340, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32045054

ABSTRACT

A novel series of 2-arylbenzothiazoles 9, 10, and 12 were designed and synthesized as VEGFR-2/FGFR-1/PDGFR-ß multiangiokinase inhibitors targeting breast cancer. Structural elongation of the known 2-phenylbenzothiazole scaffold (type I protein kinase inhibitor [PKI]), was carried out to afford series of type II PKIs 9, 10, and 12. Compounds 9d, 9f, 9i, and 9k exhibited potent multikinase inhibitory activity with IC50 values of 0.19, 0.18, 0.17, and 0.13 µM, respectively, against VEGFR-2; IC50 values of 0.28, 0.37, 0.19, and 0.27 µM, respectively, against FGFR-1; and IC50 values of 0.07, 0.04, 0.08, and 0.14 µM, respectively, against PDGFR-ß. Moreover, the synthesized benzothiazoles demonstrated promising cytotoxic activity against the MCF-7 cell line. The most potent benzothiazoles 9d and 9i exhibited IC50 values of 7.83 and 6.58 µM, respectively, on the MCF-7 cell line in comparison to sorafenib (III), which showed IC50 = 4.33 µM. Additionally, 9d and 9i showed VEGFR-2 inhibitory activity in MCF-7 cells of 81% and 83% when compared with sorafenib (III), which showed 88% inhibition. Molecular docking of the designed compounds in the VEGFR-2 and FGFR-1 active sites showed the accommodation of the 2-phenylbenzothiazole moiety, as reported, in the hinge region of the receptor tyrosine kinase (RTK)-binding site, while the amide moiety is involved in hydrogen bond interactions with the key amino acids in the gate area; this in turn directs the aryl group to the hydrophobic allosteric back pocket of the RTKs in a type II-like binding mode. The synthesized benzothiazoles showed satisfactory ADME properties for further optimization in drug discovery.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Design , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
6.
Bioorg Chem ; 93: 103332, 2019 12.
Article in English | MEDLINE | ID: mdl-31593885

ABSTRACT

A series of some new tetrahydroindolocarbazole derivatives has been synthesized. The structure of the synthesized compounds has been confirmed by different spectroscopic techniques such as IR, NMR, elemental analysis and mass spectrometry. The target compounds were evaluated for their antitumor activity against breast cancer cell line MCF-7, their GI% and their LC50 have been determined. Six of the synthesized compounds exhibited GI% values against MCF-7 cell lines exceeding 70% ranging from 71.9 to 85.0% in addition that compound 11 expressed GI% values of 99.9% and considered the most active derivatives among the synthesized ones. Compound 11 showed a remarkable decrease of u PA level to 3.5 ng/ml compared to DOX. Compound 5, 11 and 15 showed significant decrease in expression of MTAP and CDKN2A, in addition to a remarkable decrease in DNA damage comet assay method. Molecular modeling studies were performed to interpretate the behavior of active ligands as uPA inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Doxorubicin/pharmacology , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Binding Sites , Breast Neoplasms/enzymology , Breast Neoplasms/genetics , Female , Humans , MCF-7 Cells , Models, Molecular , Urokinase-Type Plasminogen Activator/metabolism
7.
Arch Pharm (Weinheim) ; 352(11): e1900089, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31463965

ABSTRACT

A new series of 2,4-disubstituted-2-thiopyrimidines 6a-t, 9a, and 9b was efficiently designed and synthesized as antiangiogenic and cytotoxic agents. Compounds 6j, 6l, and 6d showed IC50 values of 1.23, 3.78, and 3.84 µM, respectively, against the vascular endothelial growth factor receptor-2 (VEGFR-2). Most of the synthesized 2-thiouracils showed antiproliferative activity against the HepG2 cell line (hepatocellular carcinoma) in the micromolar range, for instance, 9b, 6l, 6m, 6n, and 6j displayed IC50 = 7.92, 8.35, 8.51, 9.59, and 13.06 µM, respectively, relative to sorafenib (III; IC50 = 10.99 µM). Also, compounds 6j, 9a, 6m, and 6s (IC50 = 15.21, 16.96, 17.68, and 18.15 µM, respectively) are the most potent compounds against the UO-31 cell line. Further evaluation of the effect of the synthesized candidates on VEGFR-2 in the HepG2 cell line demonstrated that compounds 6j and 6l exhibit VEGFR-2 inhibitory activity of 87% and 84%, respectively, relative to sorafenib (III; 92%). In silico docking of the synthesized hits into the binding site of VEGFR-2 showed their ability to perform the main binding interactions with the key amino acids in the binding site. Studying the in silico predicted ADME (absorption, distribution, metabolism, and excretion) parameters for the synthesized thiouracils demonstrated that they have favorable pharmacokinetic and drug-likeness properties. These results demonstrate that the 2,4-disubstituted thiouracils 6 and 9 have not only favorable antiangiogenic and antiproliferative activity but also satisfy the criteria required for the development of orally bioavailable drugs. Consequently, they represent a biologically active scaffold that should be further optimized for future discovery of potential hits.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Drug Design , Neovascularization, Pathologic/drug therapy , Pyrimidines/pharmacology , Sulfhydryl Compounds/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Docking Simulation , Molecular Structure , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
8.
J Basic Microbiol ; 59(10): 1004-1015, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31407369

ABSTRACT

Screening of 18 bacterial honey isolates revealed that all the isolates were levansucrase producers. The most potent isolate that achieved the highest activity (45.66 U/ml) was identified as Bacillus subtilis NRC based on morphological examination and 16S rRNA. The results recorded the necessity of starch (5 g/L), baker's yeast (12.5 g/L), and AlCl3 (5 mM) in improvement of the enzyme productivity. The Bacillus subtilis levansucrase was eluted as a single protein in one purification step. The enzyme molecular weight was (14 kDa). It showed its optimum activity at 45°C and could retain 60% of its activity after incubation at 50°C for 2 h. Its optimum activity was obtained at pH 8.2 and the enzyme showed great pH stability in both acidic and alkaline ranges. Unlike, most levansucrases all tested metals had an adverse effect in enzyme activity. The enzyme had antioxidant activities and were characterized as spherical micro- and nanoparticles by transmission electron microscopy. The effect of growth conditions and medium composition in levan structure and its fibrinolytic activity was evaluated.


Subject(s)
Bacillus subtilis/metabolism , Fructans/metabolism , Hexosyltransferases/chemistry , Hexosyltransferases/metabolism , Amino Acids , Antioxidants/metabolism , Bacillus subtilis/cytology , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Carbohydrates , Culture Media , Enzyme Stability , Fibrinolytic Agents/metabolism , Hexosyltransferases/isolation & purification , Hexosyltransferases/ultrastructure , Honey/microbiology , Hydrogen-Ion Concentration , Molecular Weight , RNA, Ribosomal, 16S/genetics , Salts/metabolism , Temperature
9.
Eur J Med Chem ; 179: 707-722, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31284081

ABSTRACT

In the present study, we report the discovery of a novel class of substituted 4-amino-2-thiopyrimidines as antiangiogenic and antiproliferative agents. Structural hybridization between 4-substituted aminopyrimidines (VEGFR-2 inhibitors) and 2-thioxopyrimidines (BRAF inhibitors) was carried out to afford substituted 4-amino-2-thiopyrimidines as type II dual VEGFR-2/BRAF inhibitors. Our design strategy was tailored such that the 4-amino-2-thiopyrimidine scaffold is to be accommodated in the central gate area of the inactive DFG-out conformation of both enzymes. On one side, the hydrophobic substituent on the 4-amino group would occupy the hydrophobic back pocket and on the other side the substituent on the sulfide moiety should extend to fit in the hinge region (front pocket). Molecular docking simulations confirmed the ability of the designed compounds to accomplish the key interactions in VEGFR-2 and BRAF active sites. Most of the synthesized substituted 4-amino-2-thiopyrimidines demonstrated potent VEGFR-2 inhibitory activity at submicromolar concentrations. Compounds 8a, 8d, 9c and 9e showed IC50 = 0.17, 0.12, 0.17 and 0.19 µM, respectively against VEGFR-2 in comparison to sorafenib (I) IC50 = 0.10 µM and regorafenib (II) IC50 = 0.005 µM. While compounds 9c, 9d and 10a showed IC50 = 0.15, 0.22 and 0.11 µM, respectively against BRAF-WT. At 10 µM concentration 9c revealed promising in vitro broad-spectrum antiproliferative activity against cancer cell lines with growth inhibition percent ranging from 10 to 90%. Moreover, compounds 7b, 8d, 9a, 9b, 9c and 9d showed potent activity against MCF7 cell line (IC50 = 17.18, 17.20, 19.98, 19.61, 13.02 and 16.54 µM, respectively). On the other hand, compounds 9c, 9d and 10d were found to be the most potent compounds against T-47D cell line (IC50 = 2.18, 8.09 and 4.36 µM, respectively). Studying the effect of the most potent compounds on VEGFR-2 level in MCF7 cell line revealed that 9c and 9d showed inhibition percent of 84 and 80%, respectively, in comparison to sorafenib (I) (% inhibition = 90%).


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrimidines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Bioorg Chem ; 85: 253-273, 2019 04.
Article in English | MEDLINE | ID: mdl-30641320

ABSTRACT

New thiazolylpyrazolyl coumarin derivatives were synthesized and tested for their anticancer potential in vitro against five different human cell lines, including breast MCF-7, lung A549, prostate PC3, liver HepG2 and normal melanocyte HFB4. Breast carcinoma revealed higher sensitivity towards compounds 7a, 8c, 9b, 9c and 9d with IC50 values ranging from 5.41 to 10.75 µM in comparison to the reference drug doxorubicin (IC50 = 6.73 µM). In addition, no noticeable toxicity was exhibited towards normal cells HFB4. Moreover, in vitro studies of the VEGFR-2 inhibition in human breast cancer MCF-7 cell line for the promising cytotoxic compounds showed that compounds 7a, 8c, 9b, 9c and 9d were potent inhibitors at low micromolar concentrations (IC50 = 0.034-0.582 µM) compared to the reference drug, sorafenib (IC50 = 0.019 µM). Several theoretical and experimental studies were done to reveal the molecular mechanisms that control breast carcinoma metastasis. The mechanistic effectiveness in cell cycle progression, apoptotic induction and gene regulation were assessed for the promising compound 9d due to its remarkable cytotoxic activity against MCF-7 and significant VEGFR-2 inhibition. Flow cytometeric analysis showed that compound 9d induced cell growth cessation at G2/M phase and increased the percentage of cells at pre-G1 phase that stimulates the apoptotic death of MCF-7 cells. Furthermore, real time PCR assay illustrated that compound 9d up regulated p53 gene expression and elevated Bax/Bcl-2 ratio which confirmed the mechanistic pathway of compound 9d. Moreover, the apoptotic induction of breast cancer cells MCF-7 was enhanced effectively through activation of caspases-7 and 9 by compound 9d. On the other hand, a set of in silico methods such as molecular docking, molecular dynamics simulation, QSAR analysis as well as ADMET analysis was performed in order to study the protein-ligand interactions and the relationship between the physicochemical properties and the inhibitory activity of the promising compounds 7a, 8c and 9d. Based on the aforementioned findings, compound 9d could be considered as effective apoptosis modulator and promising lead for future development of new anti-breast cancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coumarins/pharmacology , G2 Phase Cell Cycle Checkpoints/drug effects , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Caspase 7/metabolism , Caspase 9/metabolism , Catalytic Domain , Cell Line, Tumor , Coumarins/chemical synthesis , Coumarins/metabolism , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrazoles/pharmacology , Quantitative Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/metabolism , Thiazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
11.
Eur J Med Chem ; 163: 37-53, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30503942

ABSTRACT

Pursuing on our efforts regarding development of novel multikinase inhibitors, herein we report the design and synthesis of novel 2-indolinone-based ureides 6a-u and amides 10a-j. In this work we adopt a hybridization strategy between type IIA PTK inhibitor (sorafenib) and type IIB PTK inhibitors (sunitinib and nintedanib). This was implemented via linking the indolinone core, in both sunitinib and nintedanib, which is well-fitted in the hinge region in the kinase domain front cleft and the biaryl urea extension, in sorafenib, which is accommodated in the gate area and the hydrophobic back pocket. Molecular docking of the designed hybrid compounds in VEGFR-2 and FGFR-1 active sites revealed, as planned, their ability to establish the binding interactions achieved by both original type IIA and type IIB inhibitors. The designed compounds were evaluated for their multikinase inhibitory activity towards VEGFR-2, PDGFR-b and FGFR-1 and anti-proliferative activity towards HepG2, MCF-7, A549 and A498 cancer cell lines. The ureido analogue 6u emerged as the most potent multikinase inhibitor in the ureido series with VEGFR-2, FGFR-1 and PDGFR-b IC50 of 0.18, 0.23 and 0.10 µM, respectively. Whereas, the amido congener 10j emerged as the most potent multikinase inhibitor in the amide series with VEGFR-2, FGFR-1 and PDGFR-b IC50 of 0.28, 0.46 and 0.09 µM, respectively. While, indolinone 6u was the most potent derivative towards HepG2 cells (IC50 = 2.67 ±â€¯0.14 µM), 6r stood out as the most potent indolinone against A498 cells (IC50 = 0.78 ±â€¯0.02 µM). Additionally, the target indolinones displayed non-significant cytotoxic impact towards human normal melanocyte (HFB4). ADME prediction study of the designed compounds showed that they are not only with promising multikinase inhibitory activity but also with favorable pharmacokinetic and drug-likeness properties. Compounds 6r and 10j are revealed to be the best compounds in terms of multikinase activity and pharmacokinetics.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , TYK2 Kinase/antagonists & inhibitors , Amides/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Humans , Indoles/pharmacology , Models, Molecular , Oxindoles/chemical synthesis , Oxindoles/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors , Sorafenib/pharmacology , Structure-Activity Relationship , Sunitinib/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
12.
Med Chem ; 15(3): 277-286, 2019.
Article in English | MEDLINE | ID: mdl-30207239

ABSTRACT

BACKGROUND: Pyrimidines emerged as a remarkable class of heterocyclic compounds that have reinforced the pharmaceutical chemistry with various bioactive antitumor agents. Moreover, pyrimidine scaffold displayed VEGFR-2 inhibitory activity. Also, nano-sized catalysts are used in organic reactions in order to speed up the catalytic process. OBJECTIVE: We were interested herein to synthesize a new series of fused pyrimidines using ZnO(NPs) to investigate their antitumor efficiency against breast MCF7 cancer and their VEGFR- 2 inhibition properties. METHOD: A simple and efficient method for the synthesis of fused pyrimidines was developed using zinc oxide nanoparticles ZnO(NPs) in refluxing ethanol. RESULTS: The proposed structures of all new fused pyrimidines are in agreement with their spectral data. Antitumor evaluation of newly fused pyrimidine derivatives against breast MCF-7 cancer was performed. It was apparent that the 2-phenylpyrazolo[1,5-a]pyrimidine derivatives 9a (IC50 = 9.12±1.16 µg/ml), 9c (IC50 = 9.10±1.07 µg/ml) and 9d (IC50 = 9.60±1.22 µg/ml) exhibited equipotent antitumor activity as Tamoxifen (IC50 = 9.11±0.90 µg/ml). Also, the inhibitory activity of the novel fused pyrimidine derivatives on VEGFR-2 as well as Tamoxifen was determined using breast cancer cell line MCF-7. The data was obvious that 2-phenylpyrazolo[1,5-a]pyrimidine derivatives 9a, 9c and 9d exhibited noticeable VEGFR-2 inhibitory effect with % inhibition ranging from 80-84 % versus Tamoxifen 93.5%. CONCLUSION: We succeeded in this context to synthesize new fused pyrimidines using ZnO(NPs) as anti-breast cancer agents targeting VEGFR-2.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Metal Nanoparticles/chemistry , Pyrimidines/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Zinc Oxide/chemistry , Antineoplastic Agents/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Mass Spectrometry , Proton Magnetic Resonance Spectroscopy , Pyrimidines/chemistry , Structure-Activity Relationship
13.
Z Naturforsch C J Biosci ; 73(11-12): 465-478, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30205654

ABSTRACT

A new series of Schiff bases containing benzіmidazole moiety 11-17 were synthesized by the reaction of 4-(1H-benzо[d]іmіdazоl-2-yl)anіline (1) with different aromatic aldehydes (4-10) via conventional heating and microwave irradiation methods. The structures of the novel Schiff bases were characterized by using different spectral data. Also, metal complexes 18-21 of compound 13 were synthesized, and their structure was confirmed by spectral measurements (IR, NMR, UV), molar conductivity, magnetic susceptibility and thermo-gravimetric analysis. The novel synthesized ligand 13 and its complexes 18-21 were tested for their in vitro antitumor activities towards breast, liver and lung cancer cell lines. Also, the acute toxicity of the prepared compounds 13 and 18-21 was determined in vivo. The results showed that the newly synthesized compounds 13 and 18-21 exhibited a significant activity against cancer, especially for complex 21, compared to standard drug doxorubicin. The molecular docking of complexes 20 and 21 has been also studied as Aurora kinase inhibitors.


Subject(s)
Antineoplastic Agents/chemical synthesis , Aurora Kinases/antagonists & inhibitors , Benzimidazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Aurora Kinases/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Carcinoma, Ehrlich Tumor/drug therapy , Hep G2 Cells , Humans , MCF-7 Cells , Male , Mice , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Schiff Bases/chemistry
14.
Bioorg Chem ; 80: 545-554, 2018 10.
Article in English | MEDLINE | ID: mdl-30014922

ABSTRACT

Tetrahydroindolocarbazoles (THICZs) with versatile substituents, have been designed, synthesized, structure characterized, then investigated for their in-vitro anticancer screening, urokinase inhibition (uPA) evaluated, DNA-damage determination was further explored. Compounds 5, 8, 10 and 17 displayed the most promising antitumor activities against the breast cancer cell line as compared to the standard drug, doxorubicin with IC50 = 5.24 ±â€¯0.37, 4.00 ±â€¯0.52, 7.20 ±â€¯0.90 and 9.60 ±â€¯1.10 µg/ml (versus 3.30 ±â€¯0.48 µg/ml for doxorubicin). Compounds 5, 8, 10 and 17 represents the most significant uPA inhibitors of our study with IC50 of 3.80, 2.70. 4.75, 10.80 (ng/ml) respectively. The expression levels of CDKN2A gene were decreased in 8, 10 and 17 cell lines as compared to those in positive control samples. Cell lines treated with 5, 8, 10 and 17 clearly observed a high score of damaged DNA cells. A deeper examination revealed that our hetroaromatics showed an extensive hydrogen bonding interactions that is required in the S pocket which is important for activity Arg 217, Gly 219, Gly 216, Lys 143 and Ser 190. So we present THICZs as promising uPA inhibitors expected as significant promise for further development as anti-invasiveness drugs.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbazoles/chemistry , Carbazoles/pharmacology , Neoplasms/drug therapy , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carbazoles/chemical synthesis , Cell Line, Tumor , DNA Damage/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , MCF-7 Cells , Models, Molecular , Neoplasms/genetics , Neoplasms/metabolism , Urokinase-Type Plasminogen Activator/metabolism
15.
Toxicon ; 150: 270-279, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29898379

ABSTRACT

A homodimeric l-amino acid oxidase enzyme (Cv-LAAOI) was isolated from the venom of Cerastes vipera (Egyptian Sand viper) using gel filtration followed by anion exchange chromatography. The molecular mass of Cv-LAAO is 120 kDa in its native form and 60 kDa in its monomeric form. The optimum enzyme activity was achieved on l-Leucine as a substrate in 50 mM buffer pH 7.5 at 50 °C. The Cv-LAAOI activity was significantly reduced by increasing the temperature over 40 °C, lost 75% of its activity at 60 °C and inhibited completely at 80 °C. The Cv-LAAOI attains the highest substrate specificity towards L-Met. The results have also indicated that Mn2+ enhances the enzyme activity by 10%, while Cu2+, Hg2+, Ni2+, Co2+ have suppressive effects on the Cv-LAAOI activity. On the other hand, EDTA has no significant effect on the enzyme activity. The kinetic parameters of Cv-LAAOI activity (Km, Kcat and Vmax) estimated on l-Leucine at pH 8 and 37 °C were found to be 2 mM, 12 S-1 and 16.7 µmol/min/ml, respectively. In addition, the results have shown that Cv-LAAOI exhibits a significant bactericidal activity against gram-positive and gram-negative bacteria, particularly Staphylococcus aureus and Escherichia coli with MIC values of 20 µg/ml. Moreover, Cv-LAAOI has exhibited a considerable cytotoxic activity against breast cancer cell line (MCF-7) with IC50 value 2.75 ±â€¯0.38 µg/ml compared with different tumor cell lines (liver HepG2, lung A549, colon HCT116 and prostate PC3). Furthermore, Cv-LAAOI has triggered antiproliferative activity via extensive H2O2 generation as indicated by the increase in H2O2 and TBARS levels accompanied by the depletion in the catalase activity (CAT) in MCF-7 treated cells compared to the untreated ones. Thus, these findings clearly indicate that Cv-LAAOI has a selective cytotoxic effect on breast cancer cell line, demonstrating a great prospective for future use in cancer therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , L-Amino Acid Oxidase/metabolism , Viper Venoms/enzymology , Viperidae/metabolism , Animals , Anti-Bacterial Agents/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , L-Amino Acid Oxidase/chemistry , Microbial Sensitivity Tests , Substrate Specificity , Temperature , Viper Venoms/chemistry
16.
Anticancer Agents Med Chem ; 18(8): 1184-1196, 2018.
Article in English | MEDLINE | ID: mdl-29651967

ABSTRACT

BACKGROUND: Extensive studies were reported in the synthesis of several phthalazine derivatives as promising anticancer agents as potent VEGFR-2 inhibitors. Vatalanib (PTK787) was the first anilinophthalazine published derivative as a potent inhibitor of VEGFR. The discovery of vatalanib as a clinical candidate led to the design and synthesis of different anilinophthalazine derivatives as potent inhibitors for VEGFR-2. The objective of present research work is the synthesis of new agents with the same essential pharmacophoric features of the reported and clinically used VEGFR-2 inhibitors (e.g vatalanib and sorafenib). The main core of our molecular design rationale comprised bioisosteric modification strategies of VEGFR-2 inhibitors at four different positions. MATERIAL AND METHODS: A correlation between structure and biological activity of our designed phthalazines was established using molecular docking and VEGFR-2 kinase assay. RESULTS AND DISCUSSION: In view of their expected anticancer activity, novel triazolo[3,4-a]phthalazine derivatives 5-6a-o and 3-substituted-bis([1,2,4]triazolo)[3,4-a:4',3'-c]phthalazines 9a-b were designed, synthesized and evaluated for their anti-proliferative activity against two human tumor cell lines HCT-116 human colon adenocarcinoma and MCF-7 breast cancer. It was found that, compound 6o the most potent derivative against both HCT116 and MCF-7 cancer cell lines. Compounds 6o, 6m, 6d and 9b showed the highest anticancer activities against HCT116 human colon adenocarcinoma with IC50 of 7±0.06, 13±0.11, 15±0.14 and 23±0.22 µM respectively while compounds 6o, 6d, 6a and 6n showed the highest anticancer activities against MCF-7 breast cancer with IC50 of 16.98±0.15, 18.2±0.17, 57.54±0.53 and 66.45±0.67 µM respectively. Sorafenib as a highly potent VEGFR-2 inhibitor was used as a reference drug with IC50 of 5.47±0.3 and 7.26±0.3 µM respectively. Nine compounds were further evaluated for their VEGFR-2 inhibitory activity. Compounds 6o, 6m, 6d and 9b emerged as the most active counterparts against VEGFR-2 with IC50 values of 0.1±0.01, 0.15±0.02, 0.28±0.03 and 0.38±0.04 µM, respectively comparable to that of sorafenib (IC50 = 0.1±0.02) µM. Furthermore, molecular docking studies were carried out for all synthesized compounds to investigate their binding pattern and predict their binding affinities towards VEGFR-2 active site. In silico ADMET studies were calculated for the tested compounds. Most of our designed compounds exhibited good ADMET profile. CONCLUSION: The obtained results showed that, the most active compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Molecular Docking Simulation , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Triazoles/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , MCF-7 Cells , Molecular Structure , Phthalazines/chemical synthesis , Phthalazines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Vascular Endothelial Growth Factor Receptor-2/metabolism
17.
Eur J Med Chem ; 144: 859-873, 2018 Jan 20.
Article in English | MEDLINE | ID: mdl-29316526

ABSTRACT

The development of checkpoint kinase 2 (Chk2) inhibitors for the treatment of cancer has been an ongoing and attractive objective in drug discovery. In this study, twenty-one feasible pyrazole-benzimidazole conjugates were synthesized to study their effect against Chk2 activity using Checkpoint Kinase Assay. The antitumor activity of these compounds was investigated using SRB assay. A potentiation effect of the synthesized Chk2 inhibitors was also investigated using the genotoxic anticancer drugs cisplatin and doxorubicin on breast carcinoma, (ER+) cell line (MCF-7). In vivo Chk2 and antitumor activities of 8d as a single-agent, and in combination with doxorubicin, were evaluated in breast cancer bearing animals induced by N-methylnitrosourea. The effect of 8d alone and in combination with doxorubicin was also studied on cell-cycle phases of MCF-7 cells using flow cytometry analysis. The results revealed their potencies as Chk2 inhibitors with IC50 ranges from 9.95 to 65.07 nM. Generally the effect of cisplatin or doxorubicin was potentiated by the effect of most of the compounds that were studied. The in vivo results indicated that the combination of 8d and doxorubicin inhibited checkpoint kinase activity more than either doxorubicin or 8d alone. There was a positive correlation between checkpoint kinase inhibition and the improvement observed in histopathological features. Single dose treatment with doxorubicin or 8d produced S phase cell cycle arrest whereas their combination created cell cycle arrest at G2/M from 8% in case of doxorubicin to 51% in combination. Gold molecular modelling studies displayed a high correlation to the biological results.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Checkpoint Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Checkpoint Kinase 2/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
18.
Arch Pharm (Weinheim) ; 351(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29323750

ABSTRACT

A series of new indole derivatives 1-18 was synthesized and tested for their cytotoxic activity on a panel of 60 tumor cell lines. Additionally, molecular docking was carried out to study their binding pattern and binding affinity in the VEGFR-2 active site using sorafenib as a reference VEGFR-2 inhibitor. Based on the molecular docking results, compounds 5a, 5b, 6, 7, 14b, 18b, and 18c were selected to be evaluated for their VEGFR-2 inhibitory activity. Compound 18b exhibited a broad-spectrum antiproliferative activity on 47 cell lines, with GI % ranging from 31 to 82.5%. Moreover, compound 18b was the most potent VEGFR-2 inhibitor with an IC50 value of 0.07 µM, which is more potent than that of sorafenib (0.09 µM). A molecular docking study attributed the promising activity of this series to their hydrophobic interaction with the VEGFR-2 binding site hydrophobic side chains and their hydrogen bonding interaction with the key amino acids Glu885 and/or Asp1046.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Indoles/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/metabolism
19.
Biomed Pharmacother ; 98: 491-498, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29287196

ABSTRACT

Inspite of the wide facilities for controlling cancer growth, there are little drugs to inhibit its metastasis or prevent its angiogenesis. Discovering such natural or synthetic multi-targeted agent that might strike different targets is considered as a vital goal for tumor controlling. In a previous study, the chemoprotective effect of methanol extract of Momordicacharantia (MEMC) on albino western rats bearing hepatocarcinogenesis was evaluated. The mechanism by which MEMC exert its anticancer properties was unknown. Therefore, we aimed in this study to investigate the possible role of MEMC as anti-proliferative, anti-angiogenic and anti-metastatic agent to exert its chemoprotective effect. The study was conducted on sixty albino western rats divided into six groups, 10 rats each. Diethylnitrosamine (DENA) was injected intraperitoneally (i.p.) at a dose of 200 mg/kg body weight once, 2 weeks later rats were received carbon tetrachloride (CCl4) subcutaneously (3 ml/kg/week) continued for 10 weeks. MEMC was orally produced to rats (40 mg/kg) alone, as well as before, at the same time and after DENA injection. Cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), caspase-3,-8 (Casp-3,-8), histone deacetylase (HDAC) and matrixmetalloproteinases-2,-9 (MMP-2,-9) were evaluated. MEMC treatment significantly decreased Cox-2, VEGF, HDAC and MMP-2,-9 and increased Casp-3,-8 as compared to DENAgroup,which demonstrated that the anticancer effect of MEMC may be through the inhibition of angiogenesis, proliferation and metastasis and the activation of apoptosis. The improvement in before-treated group was more pronounced than that in after- and simultaneous-treated groups, indicating thatMEMC may act as a prophylactic agent more than being a therapeutic agent.


Subject(s)
Carcinogenesis/drug effects , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms/drug therapy , Liver/drug effects , Methanol/chemistry , Plant Extracts/pharmacology , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carbon Tetrachloride/pharmacology , Carcinogenesis/chemically induced , Carcinogenesis/metabolism , Cell Proliferation/drug effects , Diethylnitrosamine/pharmacology , Liver/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms, Experimental/metabolism , Male , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Rats
20.
Arch Pharm (Weinheim) ; 350(12)2017 Dec.
Article in English | MEDLINE | ID: mdl-29131379

ABSTRACT

Novel series of phthalazine derivatives 6-11 were designed, synthesized, and evaluated for their anticancer activity against two human tumor cell lines, HCT-116 human colon adenocarcinoma and MCF-7 breast cancer cells, targeting the VEGFR-2 enzyme. Compounds 7a,b and 8b,c showed the highest anticancer activities against both HCT116 human colon adenocarcinoma cells with IC50 of 6.04 ± 0.30, 13.22 ± 0.22, 18 ± 0.20, and 35 ± 0.45 µM, respectively, and MCF-7 breast cancer cells with IC50 of 8.8 ± 0.45, 17.9 ± 0.50, 25.2 ± 0.55, and 44.3 ± 0.49 µM, respectively, in comparison to sorafenib as reference drug with IC50 of 5.47 ± 0.3 and 7.26 ± 0.3 µM, respectively. Eleven compounds in this series were further evaluated for their inhibitory activity against VEGFR-2, where compounds 7a, 7b, 8c, and 8b also showed the highest VEGFR-2 inhibition with IC50 of 0.11 ± 0.01, 0.31 ± 0.03, 0.72 ± 0.08, and 0.91 ± 0.08 µM, respectively, in comparison to sorafenib as reference ligand with IC50 of 0.1 ± 0.02. Furthermore, molecular docking studies were performed for all synthesized compounds to predict their binding pattern and affinity towards the VEGFR-2 active site, in order to rationalize their anticancer activity in a qualitative way.


Subject(s)
Antineoplastic Agents/pharmacology , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Drug Design , Female , HCT116 Cells , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Molecular Docking Simulation , Phthalazines/chemical synthesis , Phthalazines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...