Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 15: 1427367, 2024.
Article in English | MEDLINE | ID: mdl-39139724

ABSTRACT

Arsenic (As) contamination of agricultural soils poses a serious threat to crop productivity and food safety. Zinc oxide nanoparticles (ZnONPs) have emerged as a potential amendment for mitigating the adverse effects of As stress in plants. Soybean crop is mostly grown on marginalized land and is known for high accumulation of As in roots than others tissue. Therefore, this study aimed to elucidate the underlying mechanisms of ZnONPs in ameliorating arsenic toxicity in soybean. Our results demonstrated that ZnOB significantly improved the growth performance of soybean plants exposed to arsenic. This improvement was accompanied by a decrease (55%) in As accumulation and an increase in photosynthetic efficiency. ZnOB also modulated hormonal balance, with a significant increase in auxin (149%), abscisic acid (118%), gibberellin (160%) and jasmonic acid content (92%) under As(V) stress assuring that ZnONPs may enhance root growth and development by regulating hormonal signaling. We then conducted a transcriptomic analysis to understand further the molecular mechanisms underlying the NPs-induced As(V) tolerance. This analysis identified genes differentially expressed in response to ZnONPs supplementation, including those involved in auxin, abscisic acid, gibberellin, and jasmonic acid biosynthesis and signaling pathways. Weighted gene co-expression network analysis identified 37 potential hub genes encoding stress responders, transporters, and signal transducers across six modules potentially facilitated the efflux of arsenic from cells, reducing its toxicity. Our study provides valuable insights into the molecular mechanisms associated with metalloid tolerance in soybean and offers new avenues for improving As tolerance in contaminated soils.

2.
ACS Omega ; 8(37): 33266-33279, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37744846

ABSTRACT

Climatic changes have a direct negative impact on the growth, development, and productivity of crops. The water potential (ψ) and temperature (T) are important limiting factors that influence the rate of seed germination and growth indices. To examine how the germination of seed responds to changes in water potential and temperature, the hydrotime model and hydrothermal model (HTT) have been employed. The HTT calculates the concept of germination time across temperatures, between Tb-To, with alteration, and between Tb-Tc, in supra-optimal ranges. The seeds of Cucumis melo L. were germinated in the laboratory for a hydro-thermal time experiment. Seeds were sown in Petri dishes containing a double-layered filter paper at different osmotic potentials (0, -0.2, -0.4, -0.6, and -0.8 MPa) by providing PEG 6000 (drought stress enhancer) at different temperatures (15, 20, 25, 30, and 35 °C). The controlled replicate was treated with 10 mL of distilled water and the rest with 10 mL of PEG solution. Results indicated that the seed vigor index (SVI-II) was highest at 15 °C with 0 MPa and lowest at 30 °C with -0.2 MPa. However, the highest activity was shown at 15 °C by catalase (CAT) and guaiacol peroxidase (GPX) at (-0.6 MPa), while the lowest values of CAT and GPX were recorded for control at 35 °C with -0.8 MPa at 35 °C, respectively. Germination energy was positively correlated with germination index (GI), germination percentage (G%), germination rate index, seed vigor index-I (SVI-I), mean moisture content (MMC), and root shoot ratio (RSR) and had a negative correlation with mean germination rate, percent moisture content of shoot and root, CAT, superoxide dismutase, peroxidase ascorbate peroxidase, and GPX. In conclusion, thermal and hydrotime models correctly predicted muskmelon germination time in response to varying water potential and temperature. The agronomic attributes were found to be maximum at 30 °C and minimum at 15 °C.

3.
ACS Omega ; 8(29): 26122-26135, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37521660

ABSTRACT

Background: Soil salinity negatively impacts agricultural productivity. Consequently, strategies should be developed to inculcate a salinity tolerance in crops for sustainable food production. Growth regulators play a vital role in regulating salinity stress tolerance. Methods: Thus, we examined the effect of exogenous salicylic acid (SA) and alpha-tocopherol (TP) (100 mg/L) on the morphophysio-biochemical responses of two wheat cultivars (Pirsabak-15 and Shankar) to salinity stress (0 and 40 mM). Results: Both Pirsabak-15 and Shankar cultivars were negatively affected by salinity stress. For instance, salinity reduced growth attributes (i.e., leaf fresh and dry weight, leaf moisture content, leaf area ratio, shoot and root dry weight, shoot and root length, as well as root-shoot ratio), pigments (chlorophyll a, chlorophyll a, and carotenoids) but increased hydrogen peroxide (H2O2), malondialdehyde (MDA), and endogenous TP in both cultivars. Among the antioxidant enzymes, salinity enhanced the activity of peroxidase (POD) and polyphenol oxidase (PPO) in Pirsabak-15; glutathione reductase (GR) and PPO in Shankar, while ascorbate peroxidase (APOX) was present in both cultivars. SA and TP could improve the salinity tolerance by improving growth and photosynthetic pigments and reducing MDA and H2O2. In general, the exogenous application did not have a positive effect on antioxidant enzymes; however, it increased PPO in Pirsabak-15 and SOD in the Shankar cultivar. Conclusions: Consequently, we suggest that SA and TP could have enhanced the salinity tolerance of our selected wheat cultivars by modulating their physiological mechanisms in a manner that resulted in improved growth. Future molecular studies can contribute to a better understanding of the mechanisms by which SA and TP regulate the selected wheat cultivars underlying salinity tolerance mechanisms.

4.
Molecules ; 28(5)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36903536

ABSTRACT

Cadmium (Cd) and lead (Pb) are global environmental pollutants. In this study, Nostoc sp. MK-11 was used as an environmentally safe, economical, and efficient biosorbent for the removal of Cd and Pb ions from synthetic aqueous solutions. Nostoc sp. MK-11 was identified on a morphological and molecular basis using light microscopic, 16S rRNA sequences and phylogenetic analysis. Batch experiments were performed to determine the most significant factors for the removal of Cd and Pb ions from the synthetic aqueous solutions using dry Nostoc sp. MK1 biomass. The results indicated that the maximum biosorption of Pb and Cd ions was found under the conditions of 1 g of dry Nostoc sp. MK-11 biomass, 100 mg/L of initial metal concentrations, and 60 min contact time at pH 4 and 5 for Pb and Cd, respectively. Dry Nostoc sp. MK-11 biomass samples before and after biosorption were characterized using FTIR and SEM. A kinetic study showed that a pseudo second order kinetic model was well fitted rather than the pseudo first order. Three isotherm models Freundlich, Langmuir, and Temkin were used to explain the biosorption isotherms of metal ions by Nostoc sp. MK-11 dry biomass. Langmuir isotherm, which explains the existence of monolayer adsorption, fitted well to the biosorption process. Considering the Langmuir isotherm model, the maximum biosorption capacity (qmax) of Nostoc sp. MK-11 dry biomass was calculated as 75.757 and 83.963 mg g-1 for Cd and Pb, respectively, which showed agreement with the obtained experimental values. Desorption investigations were carried out to evaluate the reusability of the biomass and the recovery of the metal ions. It was found that the desorption of Cd and Pb was above 90%. The dry biomass of Nostoc sp. MK-11 was proven to be efficient and cost-effective for removing Cd and especially Pb metal ions from the aqueous solutions, and the process is eco-friendly, feasible, and reliable.


Subject(s)
Cadmium , Water Pollutants, Chemical , Cadmium/chemistry , Biomass , Lead , Phylogeny , RNA, Ribosomal, 16S , Hydrogen-Ion Concentration , Kinetics , Adsorption , Water/chemistry , Water Pollutants, Chemical/chemistry , Ions
5.
J King Saud Univ Sci ; 35(1): 102397, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36406239

ABSTRACT

Masitinib is an orally acceptable tyrosine kinase inhibitor that is currently investigated under clinical trials against cancer, asthma, Alzheimer's disease, multiple sclerosis and amyotrophic lateral sclerosis. A recent study confirmed the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity of masitinib through inhibition of the main protease (Mpro) enzyme, an important pharmacological drug target to block the replication of the coronavirus. However, due to the adverse effects and lower potency of the drug, there are opportunities to design better analogues of masitinib. Herein, we substituted the N-methylpiperazine group of Masitinib with different chemical moieties and evaluated their drug-likeness and toxicities. The filtered analogues were subjected to molecular docking studies which revealed that the analogues with substituents methylamine in M10 (CID10409602), morpholine in M23 (CID59789397) and 4-methylmorpholine in M32 (CID143003625) have a stronger affinity to the drug receptor compared to masitinib. The molecular dynamics (MD) simulation analysis reveals that the identified analogues alter the mobility, structural compactness, accessibility to solvent molecules, and the number of hydrogen bonds in the native target enzyme. These structural alterations can help explain the inhibitory mechanisms of these analogues against the target enzyme. Thus, our studies provide avenues for the design of new masitinib analogues as the SARS-CoV-2 Mpro inhibitors.

6.
PLoS One ; 17(6): e0268919, 2022.
Article in English | MEDLINE | ID: mdl-35657783

ABSTRACT

The appearance of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of effective antiviral therapeutics for coronavirus disease 2019 (COVID-19), a highly infectious disease caused by the virus, demands the search for alternative therapies. Most antiviral drugs known are passive defenders which must enter the cell to execute their function and suffer from concerns such as permeability and effectiveness, therefore in this current study, we aim to identify peptide inactivators that can act without entering the cells. SARS-CoV-2 spike protein is an essential protein that plays a major role in binding to the host receptor angiotensin-converting enzyme 2 and mediates the viral cell membrane fusion process. SARS vaccines and treatments have also been developed with the spike protein as a target. The virtual screening experiment revealed antiviral peptides which were found to be non-allergen, non-toxic and possess good water solubility. U-1, GST-removed-HR2 and HR2-18 exhibit binding energies of -47.8 kcal/mol, -43.01 kcal/mol, and -40.46 kcal/mol, respectively. The complexes between these peptides and spike protein were stabilized through hydrogen bonds as well as hydrophobic interactions. The stability of the top-ranked peptide with the drug-receptor is evidenced by 50-ns molecular dynamics (MD) simulations. The binding of U-1 induces conformational changes in the spike protein with alterations in its geometric properties such as increased flexibility, decreased compactness, the increased surface area exposed to solvent molecules, and an increase in the number of total hydrogen bonds leading to its probable inactivation. Thus, the identified antiviral peptides can be used as anti-SARS-CoV-2 candidates, inactivating the virus's spike proteins and preventing it from infecting host cells.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Molecular Docking Simulation , Peptides/metabolism , Peptides/pharmacology , Protein Binding , Spike Glycoprotein, Coronavirus/chemistry
7.
J King Saud Univ Sci ; 34(6): 102155, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35702062

ABSTRACT

Platycodon grandiflorus (Jacq.) A. DC. (Campanulaceae) is commonly known as a balloon flower whose rhizomes have been widely utilized in traditional Chinese medicine (TCM) and in various Japanese prescriptions for the treatment of respiratory diseases, diabetes, and inflammatory disorders. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) global pandemic requires priming of the virus's spike (S) protein by cleavage of the S proteins by a multi-domain type II transmembrane serine protease, transmembrane protease serine 2 (TMPRSS2) to gain entry into the host cell. The current research aims at the screening of active phytocompounds of P. grandiflorus as potential inhibitors of cellular TMPRSS2 using molecular docking and molecular dynamics simulations approach. In silico toxicity analyses show that out of a total of 34 phytocompounds selected for the study, 12 compounds obey Lipinski's rule of five and have favourable pharmacokinetic properties. The top three lead molecules identified here were Apigenin, Luteolin and Ferulic acid which exhibited binding energies of -7.47 kcal/mol, -6.8 kcal/mol and -6.62 kcal/mol respectively with corresponding inhibition constants of 3.33 µM, 10.39 µM and 13.95 µM. The complexes between the lead molecules and the receptor were held by hydrogen bond interactions with key residues such as Gly383, Gly385, Glu389, Lys390, Asp435, Ser436, Ser441, Cys465 and Lys467, and hydrophobic interactions with surrounding residues. The stability of the protein-ligand complexes was evaluated during 100 ns molecular dynamics (MD) simulation by analysing key geometric properties such as RMSD, RMSF, radius of gyration, total solvent accessible surface area and the number of hydrogen bonds. The binding free energies analysis using MD simulations revealed that the compounds and TMPRSS2 have favourable thermodynamic interactions, which are primarily driven by van der Waals forces. As a result, the selected bioactive phytochemicals from P. grandiflorus that target the cellular TMPRSS2 could offer an alternative treatment option against SARS-CoV-2 infections.

8.
PLoS One ; 17(3): e0265231, 2022.
Article in English | MEDLINE | ID: mdl-35275977

ABSTRACT

Larrea tridentata (Sesse and Moc. ex DC.) Coville (family: Zygophyllaceae) is an aromatic evergreen shrub with resin-covered leaves, known to use in traditional medicine for diverse ailments. It also has immense pharmacological significance due to presence of powerful phenylpropanoids antioxidant, nordihydroguaiaretic acid (NDGA). The RNA sequence/transcriptome analyses connect the genomic information into the discovery of gene function. Hence, the acquaint analysis of L. tridentata is in lieu to characterize the transcriptome, and to identify the candidate genes involved in the phenylpropanoid biosynthetic pathway. To gain molecular insight, the bioinformatics analysis of transcriptome was performed. The total bases covered 48,630 contigs of length greater than 200 bp and above came out to 21,590,549 with an average GC content of 45% and an abundance of mononucleotide, SSR, including C3H, FAR1, and MADS transcription gene families. The best enzyme commission (EC) classification obtained from the assembled sequences represented major abundant enzyme classes e.g., RING-type E3 ubiquitin transferase and non-specific serine/threonine protein kinase. The KEGG pathway analysis mapped into 377 KEGG different metabolic pathways. The enrichment of phenylpropanoid biosynthesis pathways (22 genes i.e., phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, cinnamoyl-CoA reductase, beta-glucosidase, shikimate O-hydroxycinnamoyl transferase, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase, cinnamyl-alcohol dehydrogenase, peroxidase, coniferyl-alcohol glucosyltransferase, caffeoyl shikimate esterase, caffeoyl-CoA O-methyltransferase, caffeate O-methyltransferase, coniferyl-aldehyde dehydrogenase, feruloyl-CoA 6-hydroxylase, and ferulate-5-hydroxylase), and expression profile indicated antioxidant, anti-arthritic, and anticancer properties of L. tridentata. The present results could provide an important resource for squeezing biotechnological applications of L. tridentata.


Subject(s)
Larrea , Transcriptome , Antioxidants , Metabolic Networks and Pathways/genetics , Mixed Function Oxygenases
9.
Nanomaterials (Basel) ; 12(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35010111

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV-vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stress, cytotoxicity, DNA damage, apoptosis, and autophagy in a dose- and time-dependent manner. These findings may encourage integrating the potential of natural products and the efficiency of silver nanoparticles for the fabrication of safe, environmentally friendly, and effective anticancer agents.

10.
J King Saud Univ Sci ; 34(2): 101810, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35002180

ABSTRACT

The need for novel antiviral treatments for coronavirus disease 2019 (COVID-19) continues with the widespread infections and fatalities throughout the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the deadly disease, relies on the non-structural protein Nsp1 for multiplication within the host cells and disarms the host immune defences by various mechanisms. Herein, we investigated the potential of artemisinin and its derivatives as possible inhibitors of SARS-CoV-2 Nsp1 through various computational approaches. Molecular docking results show that artemisinin (CID68827) binds to Nsp1 with a binding energy of -6.53 kcal/mol and an inhibition constant of 16.43 µM. The top 3 derivatives Artesunate (CID6917864), Artemiside (CID53323323) and Artemisone (CID11531457) show binding energies of -7.92 kcal/mol, -7.46 kcal/mol and -7.36 kcal/mol respectively. Hydrophobic interactions and hydrogen bonding with Val10, Arg11, and Gln50 helped to stabilize the protein-ligand complexes. The pharmacokinetic properties of these molecules show acceptable properties. The geometric parameters derived from large-scale MD simulation studies provided insights into the changes in the structural topology of Nsp1 upon binding of Artesunate. Thus, the findings of our research highlight the importance of artemisinin and its derivatives in the development of drugs to inhibit SARS-CoV-2 Nsp1 protein.

11.
J King Saud Univ Sci ; 34(2): 101773, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34955621

ABSTRACT

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread around the world jeopardizing the global economy and health. The rapid proliferation and infectivity of the virus can be attributed to many accumulating mutations in the spike protein leading to continuous generation of variants. The spike protein is a glycoprotein that recognizes and binds to cell surface receptor known as angiotensin-converting enzyme 2 (ACE2) leading to the fusion of the viral and host cell membranes and entry into the host cells. These circulating variants in the population have greatly impacted the virulence, transmissibility, and immunological evasion of the host. The present study is aimed at understanding the impact of the major mutations (L452R, T478K and N501Y) in the receptor-binding domain (RBD) of spike protein and their consequences on the binding affinity to human ACE2 through protein-protein docking and molecular dynamics simulation approaches. Protein-protein docking and Molecular mechanics with generalised Born and surface area solvation (MM/GBSA) binding free energy analysis reveal that the spike mutants-L452R, T478K and N501Y have a higher binding affinity to human ACE2 as compared to the native spike protein. The increase in the number of interface residues, interface area and intermolecular forces such as hydrogen bonds, salt bridges and non-bonded contacts corroborated with the increase in the binding affinity of the spike mutants to ACE2. Further, 75 ns all-atom molecular dynamics simulation investigations show variations in the geometric properties such as root mean square deviation (RMSD), radius of gyration (Rg), total solvent accessible surface area (SASA) and number of hydrogen bonds (NHBs) in the mutant spike:ACE2 complexes with respect to the native spike:ACE2 complex. Therefore, the findings of this study unravel plausible molecular mechanisms of increase in binding affinity of spike mutants (L452R, T478K and N501Y) to human ACE2 leading to higher virulence and infectivity of emerging SARS-CoV-2 variants. The study will further aid in designing novel therapeutics targeting the interface residues between spike protein and ACE2 receptor.

12.
Saudi J Biol Sci ; 29(1): 53-64, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34548836

ABSTRACT

Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of exogenous compounds. Drug binding to HSA is an important consideration when developing new therapeutic molecules, and it also aids in understanding the underlying mechanisms that govern their pharmacological effects. This study aims to investigate the molecular binding of coronavirus disease 2019 (COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites. Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug candidate molecules (ß-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak binding to HSA, with binding energies ranging from -5 to -6.7 kcal/mol. Ivermectin, Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies ranging from -6.9 to -9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir, Paritaprevir etc.) with binding energies ranging from -9.7 to -12.1 kcal/mol. All these molecules bind to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption, blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each molecule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The binding free energy between free HSA and compounds were calculated using Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) approach. The findings of this study might be useful in understanding the mechanism of COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and pharmacokinetics.

13.
Curr Pharm Biotechnol ; 23(7): 959-969, 2022.
Article in English | MEDLINE | ID: mdl-34097590

ABSTRACT

BACKGROUND: There has been tremendous pressure on healthcare facilities globally due to the recent emergence of novel coronavirus infection known as COVID-19 and its rapid spread across the continents. The lack of effective therapeutics for the management of the pandemic calls for the discovery of new drugs and vaccines. OBJECTIVE: In the present study, a chemical library was screened for molecules against three coronavirus 3CL-like protease enzymes (SARS-CoV-2 3CLpro, SARS-CoV 3CLpro and MERS-CoV 3CLpro), which are a key player in the viral replication cycle. METHODS: Extensive computational methods such as virtual screening and molecular docking were employed in this study. RESULTS: Two lead molecules, ZINC08825480 (4-bromo-N'-{(E)-[1-phenyl-3-(pyridin-3-yl)-1H-pyrazol- 4-yl]methylidene}benzene-1-sulfonohydrazide) and ZINC72009942 (N-[[2-[[(3S)-3-methyl-1-piperidyl] methyl]phenyl]methyl]-6-oxo-1-(p-tolyl)-4,5-dihydro-1,2,4-triazine-3-carboxamide), were identified with better affinity with the three target enzymes as compared to the approved antiviral drugs. Both the lead molecules possessed favorable drug-like properties, fit well into the active site pocket close to His- Cys dyad and showed a good number of hydrogen bonds with the backbone as well as side chains of key amino acid residues. CONCLUSION: Thus, the present study offers two novel chemical entities against coronavirus infections which can be validated through various biological assays.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Peptide Hydrolases/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2
14.
Saudi J Biol Sci ; 28(7): 3768-3775, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34220230

ABSTRACT

Adenium obesum (Forssk.) Roem. & Schult. belonging to the family Apocynaceae, is remarkable for its horticultural and ornamental values, poisonous nature, and medicinal uses. In order to have understanding of cp genome characterization of highly valued medicinal plant, and the evolutionary and systematic relationships, the complete plastome / chloroplast (cp) genome of A. obesum was sequenced. The assembled cp genome of A. obesum was found to be 154,437 bp, with an overall GC content of 38.1%. A total of 127 unique coding genes were annotated including 96 protein-coding genes, 28 tRNA genes, and 3 rRNA genes. The repeat structures were found to comprise of only mononucleotide repeats. The SSR loci are compososed of only A/T bases. The phylogenetic analysis of cp genomes revealed its proximity with Nerium oleander.

15.
Biomed Res Int ; 2021: 8853056, 2021.
Article in English | MEDLINE | ID: mdl-34258282

ABSTRACT

The recent outbreak of the deadly coronavirus disease 19 (COVID-19) pandemic poses serious health concerns around the world. The lack of approved drugs or vaccines continues to be a challenge and further necessitates the discovery of new therapeutic molecules. Computer-aided drug design has helped to expedite the drug discovery and development process by minimizing the cost and time. In this review article, we highlight two important categories of computer-aided drug design (CADD), viz., the ligand-based as well as structured-based drug discovery. Various molecular modeling techniques involved in structure-based drug design are molecular docking and molecular dynamic simulation, whereas ligand-based drug design includes pharmacophore modeling, quantitative structure-activity relationship (QSARs), and artificial intelligence (AI). We have briefly discussed the significance of computer-aided drug design in the context of COVID-19 and how the researchers continue to rely on these computational techniques in the rapid identification of promising drug candidate molecules against various drug targets implicated in the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The structural elucidation of pharmacological drug targets and the discovery of preclinical drug candidate molecules have accelerated both structure-based as well as ligand-based drug design. This review article will help the clinicians and researchers to exploit the immense potential of computer-aided drug design in designing and identification of drug molecules and thereby helping in the management of fatal disease.


Subject(s)
Antiviral Agents/chemistry , Artificial Intelligence , COVID-19 Drug Treatment , Drug Design , Drug Discovery , SARS-CoV-2 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation
16.
PLoS One ; 16(7): e0254035, 2021.
Article in English | MEDLINE | ID: mdl-34260631

ABSTRACT

Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (ß-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.


Subject(s)
Antineoplastic Agents , Ficus , Molecular Docking Simulation , Binding Sites , Humans , Hydrophobic and Hydrophilic Interactions
17.
Saudi J Biol Sci ; 28(3): 1557-1560, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33732040

ABSTRACT

The recent massive development in the next-generation sequencing platforms and bioinformatics tools including cloud based computing have proven extremely useful in understanding the deeper-level phylogenetic relationships of angiosperms. The present phylotranscriptomic analyses address the poorly known evolutionary relationships of the order Dilleniales to order of the other angiosperms using the minimum evolution method. The analyses revealed the nesting of the representative taxon of Dilleniales in the MPT but distinct from the representative of the order Santalales, Caryophyllales, Asterales, Cornales, Ericales, Lamiales, Saxifragales, Fabales, Malvales, Vitales and Berberidopsidales.

18.
Saudi J Biol Sci ; 28(2): 1487-1493, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33613076

ABSTRACT

Saraca asoca (Roxb.) Willd. (subfamily Detarioideae, family Fabaceae) is a perennial evergreen sacred medicinal tree classified under 'vulnerable' by the IUCN. The chloroplast (cp) genome/plastome which follows uniparental inheritance contains many useful genetic information because of its conservative rate of evolution. The assembled cp genome of S. asoca which maps as a conserved circular structure revealed extensive rearrangement in gene organization, comprising total length 160,003 bp including LSC, SSC, IRa, and IRb, and GC content was 35.26%. Herein a set of rbcL and matK gene were established using molecular phylogenetic analyses for molecular typing of S. asoca.

19.
Chemosphere ; 273: 129665, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33508687

ABSTRACT

Nitroimidazole compounds are widely used antibiotics to encounter anaerobic bacterial and parasitic infections. The wide usage of antibiotic drugs became an ecological contaminant which in turn into potential monitoring. In this regards, we have designed and developed a new electrochemical sensing probe to monitor an antiprotozoal drug, ornidazole (ODZ), with the aid of a glassy carbon electrode (GCE) integrated with manganese molybdate nanorods (MnMoO4) decorated graphene nanosheets (GNS) hybrid materials that prepared by feasible probe sonochemical method (parameters: 2-4 W, 5 mV amp, 20 kHz). The electrochemical investigations of the developed probe were performed by using rapid scan electrochemical workstations namely cyclic voltammetry (CV) and amperometric (i-t) techniques. The as-prepared MnMoO4/GNS nanocomposite was characterized and its purity of nanocomposite formation was confirmed by various analytical techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. In addition to that, the textural morphology of the MnMoO4/GNS nanocomposite was examined with the aid of field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The MnMoO4/GNS nanocomposite rotating disk glassy carbon electrode (RDGCE) plays a crucial role in electrochemical detection of ODZ, which results in excellent anti-interference ability, a lower detection limit of 845 pM, massive linear ranges from 10 to 770 nM, and good sensitivity of about 104.62 µA µM-1 cm-2. From the acquired electrochemical studies, we have developed a disposable electrochemical sensor probe using a low-cost screen-printed carbon electrode (SPCE) with MnMoO4/GNS nanocomposite. The MnMoO4/GNS/SPCE are capably employed in real-time sensing of ODZ in water and urine samples. These electrochemical studies revealed the integral new vision on the electrocatalytic performance of the modified SPCE and also shown excellent amplification results in ultra-trace levels.


Subject(s)
Environmental Pollutants , Graphite , Nanotubes , Ornidazole , Electrochemical Techniques , Spectroscopy, Fourier Transform Infrared , Water
20.
Ecotoxicol Environ Saf ; 211: 111934, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33472109

ABSTRACT

In the present work, we reported a one pot simple colloidal-gel synthesis of molybdenum bismuth vanadate (MoBiVO4). The charge transfer property of MoBiVO4 was improved by developing a composite with graphene oxide (GO) through sonochemical technique. The optical and morphological analysis revealed that successful formation of GO-MoBiVO4 composite without any other filth. As prepared composite was used to modify the superficial surface of glassy carbon electrode (GO-MoBiVO4/GCE) and applied for the selective detection of environmental pollutant 2, 4, 6 trichrlorophenol (TCP). The electron channeling capability of GO with molybdenum bismuth vanadate possessed a superior electrochemical response in cyclic voltammetry (CV), whereas bare GCE and other modified electrodes provided an inferior response with lower current response. The differential pulse voltammetry (DPV) response of TCP at GO-MoBiVO4/GCE outcomes with low level detection of 0.4 nM and higher sensitivity of 2.49 µA µM-1 cm-2 with wider linear response 0.199-17.83 µM. Furthermore, the proposed sensor applied in practicability analysis and the results indicates GO-MoBiVO4/GCE prominent towards electrochemical detection of TCP.


Subject(s)
Bismuth/chemistry , Chlorophenols/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Graphite/chemistry , Molybdenum/chemistry , Vanadates/chemistry , Carbon/chemistry , Chlorophenols/chemistry , Electrochemical Techniques/methods , Electrodes , Environmental Pollutants/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL