Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 7(3): 1027-1034, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30918645

ABSTRACT

With the shortage of common vegetable fat sources, such as soybean oil (SBO), it is urgent to find alternative oil sources for broiler producers. The objective of this study was to evaluate the potential of refined cottonseed oil (CSO) as a replacement for SBO in broiler diets. A total of 180 chickens at 1 d of age were randomly assigned to five treatments of six replicates. One treatment was the basal diet (control), and the other four experimental diets were formulated from the basal diet by replacing (w/w) 25%, 50%, 75%, and 100% of the SBO with refined CSO (only containing 0.2% cyclopropenoid fatty acids, and no free gossypol was detected). At the end of week 6, blood samples were obtained from the jugular vein and the breast muscle was aseptically isolated from two birds per replicate. The results showed that substitution of CSO for low-level SBO had no significant effect (p > 0.05) on broiler performance during the starter period (week 1-3), while 50% level of CSO inclusion significantly increased (p < 0.05) ADG and improved FCR compared with the control group during the finisher period (week 4-6). Broilers fed 100% CSO diets had lower (p < 0.05) levels of serum total protein (TP), albumin (ALB), cholesterol (CHO) concentrations, and serum alkaline phosphatase (AKP) activity than that of the control broilers. Furthermore, the serum antioxidant status appeared to be enhanced by CSO. Additionally, high levels of CSO (75 and 100%) significantly increased the proportions of C14:0 and C18:0 but decreased the proportions of C18:1n9t, C18:2n6c, and ∑ n-6 polyunsaturated fatty acids in breast muscles of broilers. Overall, the SBO could be replaced with refined CSO up to 50% in diets for broilers without adversely affecting the performance, liver functions, and breast muscle fatty acid composition of these broilers.

2.
Toxins (Basel) ; 9(11)2017 11 15.
Article in English | MEDLINE | ID: mdl-29140290

ABSTRACT

Aflatoxicosis is a grave threat to the poultry industry. Dietary supplementation with antioxidants showed a great potential in enhancing the immune system; hence, protecting animals against aflatoxin B1-induced toxicity. Grape seed proanthocyanidin extract (GSPE) one of the most well-known and powerful antioxidants. Therefore, the purpose of this research was to investigate the effectiveness of GSPE in the detoxification of AFB1 in broilers. A total of 300 one-day-old Cobb chicks were randomly allocated into five treatments of six replicates (10 birds per replicate), fed ad libitum for four weeks with the following dietary treatments: 1. Basal diet (control); 2. Basal diet + 1 mg/kg AFB1 contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg; (GSPE 250 mg/kg) 4. Basal diet + AFB1 (1 mg/kg) + GSPE 250 mg/kg; (AFB1 + GSPE 250 mg/kg) 5. Basal diet + AFB1 (1mg/kg) + GSPE 500 mg/kg, (AFB1 + GSPE 500 mg/kg). When compared with the control group, feeding broilers with AFB1 alone significantly reduced growth performance, serum immunoglobulin contents, negatively altered serum biochemical contents, and enzyme activities, and induced histopathological lesion in the liver. In addition, AFB1 significantly increased malondialdehyde content and decreased total superoxide dismutase, catalase, glutathione peroxide, glutathione-S transferase, glutathione reductase activities, and glutathione concentration within the liver and serum. The supplementation of GSPE (250 and 500 mg/kg) to AFB1 contaminated diet reduced AFB1 residue in the liver and significantly mitigated AFB1 negative effects. From these results, it can be concluded that dietary supplementation of GSPE has protective effects against aflatoxicosis caused by AFB1 in broiler chickens.


Subject(s)
Aflatoxin B1/toxicity , Growth/drug effects , Liver/drug effects , Proanthocyanidins/pharmacology , Seeds/chemistry , Vitis/embryology , Aflatoxin B1/metabolism , Animals , Chickens , Liver/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...