Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 149: 329-334, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29132112

ABSTRACT

Raman spectroscopy has been positively evaluated as a tool for the in-line and real-time monitoring of powder blending processes and it has been proved to be effective in the determination of the endpoint of the mixing, showing its potential role as process analytical technology (PAT). The aim of this study is to show advantages and disadvantages of Raman spectroscopy with respect to the most traditional HPLC analysis. The spectroscopic results, obtained directly on raw powders, sampled from a two-axis blender in real case conditions, were compared with the chromatographic data obtained on the same samples. The formulation blend used for the experiment consists of active pharmaceutical ingredient (API, concentrations 6.0% and 0.5%), lactose and magnesium stearate (as excipients). The first step of the monitoring process was selecting the appropriate wavenumber region where the Raman signal of API is maximal and interference from the spectral features of excipients is minimal. Blend profiles were created by plotting the area ratios of the Raman peak of API (AAPI) at 1598cm-1 and the Raman bands of excipients (AEXC), in the spectral range between 1560 and 1630cm-1, as a function of mixing time: the API content can be considered homogeneous when the time-dependent dispersion of the area ratio is minimized. In order to achieve a representative sampling with Raman spectroscopy, each sample was mapped in a motorized XY stage by a defocused laser beam of a micro-Raman apparatus. Good correlation between the two techniques has been found only for the composition at 6.0% (w/w). However, standard deviation analysis, applied to both HPLC and Raman data, showed that Raman results are more substantial than HPLC ones, since Raman spectroscopy enables generating data rich blend profiles. In addition, the relative standard deviation calculated from a single map (30 points) turned out to be representative of the degree of homogeneity for that blend time.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Spectrum Analysis, Raman/methods , Chemistry, Pharmaceutical/instrumentation , Chromatography, High Pressure Liquid , Drug Compounding/instrumentation , Excipients/chemistry , Powders/chemistry
2.
PLoS One ; 10(3): e0119310, 2015.
Article in English | MEDLINE | ID: mdl-25803285

ABSTRACT

BACKGROUND AND AIM: Sparse evidence suggests a possible link between exposure to airborne nanoparticles (NPs) and cardiovascular (CV) risk, perhaps through mechanisms involving oxidative stress and inflammation. We assessed the effects of TiO2 and Co3O4 NPs in human circulating angiogenic cells (CACs), which take part in vascular endothelium repair/replacement. METHODS: CACs were isolated from healthy donors' buffy coats after culturing lymphomonocytes on fibronectin-coated dishes in endothelial medium for 7 days. CACs were pre-incubated with increasing concentration of TiO2 and Co3O4 (from 1 to 100 µg/ml) to test the effects of NP ­ characterized by Transmission Electron Microscopy ­ on CAC viability, apoptosis (caspase 3/7 activation), function (fibronectin adhesion assay), oxidative stress and inflammatory cytokine gene expression. RESULTS: Neither oxidative stress nor cell death were associated with exposure to TiO2 NP (except at the highest concentration tested), which, however, induced a higher pro-inflammatory effect compared to Co3O4 NPs (p<0.01). Exposure to Co3O4 NPs significantly reduced cell viability (p<0.01) and increased caspase activity (p<0.01), lipid peroxidation end-products (p<0.05) and pro-inflammatory cytokine gene expression (p<0.05 or lower). Notably, CAC functional activity was impaired after exposure to both TiO2 (p<0.05 or lower) and Co3O4 (p<0.01) NPs. CONCLUSIONS: In vitro exposure to TiO2 and Co3O4 NPs exerts detrimental effects on CAC viability and function, possibly mediated by accelerated apoptosis, increased oxidant stress (Co3O4 NPs only) and enhancement of inflammatory pathways (both TiO2 and Co3O4 NPs). Such adverse effects may be relevant for a potential role of exposure to TiO2 and Co3O4 NPs in enhancing CV risk in humans.


Subject(s)
Apoptosis/drug effects , Cobalt/pharmacology , Leukocytes, Mononuclear/drug effects , Neovascularization, Physiologic/drug effects , Oxidative Stress/drug effects , Oxides/pharmacology , Titanium/pharmacology , Cobalt/chemistry , Cobalt/toxicity , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Humans , Leukocytes, Mononuclear/cytology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Microscopy, Electron, Transmission , Oxides/chemistry , Oxides/toxicity , Primary Cell Culture , Titanium/chemistry , Titanium/toxicity
3.
Toxicol In Vitro ; 29(3): 426-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25526690

ABSTRACT

Ultra-fine particles have recently been included among the risk factors for the development of endothelium inflammation and atherosclerosis, and cobalt (CoNPs) and titanium oxide nanoparticles (TiNPs) have attracted attention because of their wide range of applications. We investigated their toxicity profiles in two primary endothelial cell lines derived from human aorta (HAECs) and human umbilical vein (HUVECs) by comparing cell viability, oxidative stress, the expression of adhesion molecules and the release of chemokines during NP exposure. Both NPs were very rapidly internalised, and significantly increased adhesion molecule (ICAM-1, VCAM-1, E-selectin) mRNA and protein levels and the release of monocyte chemoattractant protein-1 (MCP-1) and interleukin 8 (IL-8). However, unlike the TiNPs, the CoNPs also induced time- and concentration-dependent metabolic impairment and oxidative stress without any evident signs of cell death or the induction of apoptosis. There were differences between the HAECs and HUVECs in terms of the extent of oxidative stress-related enzyme and vascular adhesion molecule expression, ROS production, and pro-inflammatory cytokine release despite the similar rate of NP internalisation, thus indicating endothelium heterogeneity in response to exogenous stimuli. Our data indicate that NPs can induce endothelial inflammatory responses via various pathways not involving only oxidative stress.


Subject(s)
Cobalt/toxicity , Endothelial Cells/drug effects , Inflammation/chemically induced , Nanoparticles/toxicity , Oxidative Stress/drug effects , Titanium/toxicity , Aorta, Thoracic/cytology , Aorta, Thoracic/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Inflammation/pathology , Membrane Potential, Mitochondrial/drug effects , Particle Size
4.
Part Fibre Toxicol ; 11: 63, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25487314

ABSTRACT

BACKGROUND: In light of recent developments in nanotechnologies, interest is growing to better comprehend the interaction of nanoparticles with body tissues, in particular within the cardiovascular system. Attention has recently focused on the link between environmental pollution and cardiovascular diseases. Nanoparticles <50 nm in size are known to pass the alveolar-pulmonary barrier, enter into bloodstream and induce inflammation, but the direct pathogenic mechanisms still need to be evaluated. We thus focused our attention on titanium dioxide (TiO2) nanoparticles, the most diffuse nanomaterial in polluted environments and one generally considered inert for the human body. METHODS: We conducted functional studies on isolated adult rat cardiomyocytes exposed acutely in vitro to TiO2 and on healthy rats administered a single dose of 2 mg/Kg TiO2 NPs via the trachea. Transmission electron microscopy was used to verify the actual presence of TiO2 nanoparticles within cardiac tissue, toxicological assays were used to assess lipid peroxidation and DNA tissue damage, and an in silico method was used to model the effect on action potential. RESULTS: Ventricular myocytes exposed in vitro to TiO2 had significantly reduced action potential duration, impairment of sarcomere shortening and decreased stability of resting membrane potential. In vivo, a single intra-tracheal administration of saline solution containing TiO2 nanoparticles increased cardiac conduction velocity and tissue excitability, resulting in an enhanced propensity for inducible arrhythmias. Computational modeling of ventricular action potential indicated that a membrane leakage could account for the nanoparticle-induced effects measured on real cardiomyocytes. CONCLUSIONS: Acute exposure to TiO2 nanoparticles acutely alters cardiac excitability and increases the likelihood of arrhythmic events.


Subject(s)
Air Pollutants/toxicity , Arrhythmias, Cardiac/chemically induced , Heart Ventricles/drug effects , Inhalation Exposure/adverse effects , Metal Nanoparticles/toxicity , Titanium/toxicity , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/physiopathology , Cell Membrane Permeability/drug effects , Cells, Cultured , Computer Simulation , DNA Damage , Excitation Contraction Coupling/drug effects , Heart Conduction System/drug effects , Heart Conduction System/physiopathology , Heart Ventricles/cytology , Heart Ventricles/physiopathology , Heart Ventricles/ultrastructure , Lipid Peroxidation/drug effects , Male , Metal Nanoparticles/administration & dosage , Models, Biological , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Rats, Wistar , Titanium/administration & dosage , Toxicity Tests, Acute
5.
Anal Bioanal Chem ; 405(5): 1733-41, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23224575

ABSTRACT

This study aims to evaluate the relevance of portable Raman and portable mid-Fourier transform infrared (FTIR) reflectance instruments in monitoring the synthetic treatments applied on plaster substrates, a crucial issue in a conservation work. Some polymeric consolidants and protectives have a relatively short life owing to their degradation, and after some years the surface should be retreated. It follows that any information about the presence and composition of the products applied, their chemical transformations and their distribution on the surfaces is essential. For these purposes, conservation scientists should seek and test new in situ methods, and this is of utmost importance especially in the case of buildings, considering their large dimensions and consequent extensive mapping. The effectiveness of portable Raman and portable mid-FTIR reflectance instruments has been compared by analysing a set of laboratory specimens prepared and treated with variable amounts of products belonging to three classes of polymers; the spectroscopic investigation highlighted, for the first time, the limits and the advantages of portable Raman and portable mid-FTIR reflectance instruments in the detection of small amounts of products commonly employed for the conservation of plasters.

6.
Article in English | MEDLINE | ID: mdl-19111503

ABSTRACT

Green colored samples on wall paintings and green powder from a pigment pot found in Pompeii area are investigated by micro-Raman, FT-IR and, for one sample, SEM-EDX. To obtain the green color, green earths and malachite were used, together with mixture of Egyptian blue and yellow ochre. The mineralogical identification of the green earths has been attempted through the comparison of the vibrational features, discriminating between celadonite and glauconite spectra. Traces of a modern synthetic pigment containing copper phthalocyanine were found in a fresco fragment.


Subject(s)
Coloring Agents/analysis , Minerals/analysis , Paintings/history , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , History, Ancient , Microscopy, Electron, Scanning , Organometallic Compounds/analysis , Powders/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...