Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Leukoc Biol ; 107(2): 263-271, 2020 02.
Article in English | MEDLINE | ID: mdl-31617241

ABSTRACT

The role of group A streptococcal and Streptococcus dysgalactiae subspecies equisimilis M-protein specific Abs and T-cells in endothelial cell activation was investigated using cultured rat aortic endothelial cells, and in a rat model of autoimmune valvulitis. Heat inactivated serum and mononuclear cells from streptococcal M-protein immunized rats independently induced upregulation of the endothelial cell adhesion molecules, vascular cell adhesion molecule (VCAM)-1 and intercellular adhesion molecule (ICAM)-1 in cultured cells. We also observed T-cell migration across endothelial cell monolayers incubated with serum from M-protein-immunized rats. Furthermore, we observed VCAM-1 and ICAM-1 expression in the myocardium of rats injected with M-protein compared to control animals. These observations support the contention that initial interactions between streptococcal M-protein specific Abs and/or T-cells with the heart endothelium lead to endothelial cell activation followed by transmigration of M-protein specific T-cells into heart tissue leading to an inflammatory process that leads to carditis in rheumatic fever and rheumatic heart disease.


Subject(s)
Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Autoimmune Diseases/etiology , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/immunology , Endothelium, Vascular/immunology , Myocarditis/etiology , Rheumatic Heart Disease/etiology , T-Lymphocytes/immunology , Animals , Antigens, Bacterial/metabolism , Autoimmune Diseases/pathology , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/metabolism , Cell Movement , Endothelium, Vascular/metabolism , Female , Intercellular Adhesion Molecule-1/metabolism , Myocarditis/pathology , Rats , Rats, Inbred Lew , Rheumatic Heart Disease/pathology , Streptococcus/immunology , T-Lymphocytes/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
2.
J Infect Dis ; 218(2): 324-335, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29236994

ABSTRACT

Acute rheumatic fever and rheumatic heart disease (ARF/RHD) have long been described as autoimmune sequelae of Streptococcus pyogenes or group A streptococcal (GAS) infection. Both antibody and T-cell responses against immunodominant GAS virulence factors, including M protein, cross-react with host tissue proteins, triggering an inflammatory response leading to permanent heart damage. However, in some ARF/RHD-endemic regions, throat carriage of GAS is low. Because Streptococcus dysgalactiae subspecies equisimilis organisms, also known as ß-hemolytic group C streptococci and group G streptococci (GGS), also express M protein, we postulated that streptococci other than GAS may have the potential to initiate or exacerbate ARF/RHD. Using a model initially developed to investigate the uniquely human disease of ARF/RHD, we have discovered that GGS causes interleukin 17A/interferon γ-induced myocarditis and valvulitis, hallmarks of ARF/RHD. Remarkably the histological, immunological, and functional changes in the hearts of rats exposed to GGS are identical to those exposed to GAS. Furthermore, antibody cross-reactivity to cardiac myosin was comparable in both GGS- and GAS-exposed animals, providing additional evidence that GGS can induce and/or exacerbate ARF/RHD.


Subject(s)
Autoimmune Diseases/etiology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Rheumatic Heart Disease/etiology , Streptococcal Infections/pathology , Streptococcus/immunology , Animals , Antigens, Bacterial/immunology , Autoimmune Diseases/microbiology , Autoimmune Diseases/physiopathology , Bacterial Outer Membrane Proteins/immunology , Carrier Proteins/immunology , Disease Models, Animal , Female , Heart Valve Diseases/etiology , Heart Valve Diseases/microbiology , Heart Valve Diseases/physiopathology , Myocarditis/etiology , Myocarditis/microbiology , Myocarditis/physiopathology , Rats, Inbred Lew , Rheumatic Heart Disease/microbiology , Rheumatic Heart Disease/physiopathology , Streptococcus/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL