Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(10)2023 09 27.
Article in English | MEDLINE | ID: mdl-37892137

ABSTRACT

Dysregulation of metabolic functions in the liver impacts the development of diabetes and metabolic disorders. Normal liver function can be compromised by increased inflammation via the activation of signaling such as nuclear factor (NF)-κB signaling. Notably, we have previously identified lysine demethylase 2A (KDM2A)-as a critical negative regulator of NF-κB. However, there are no studies demonstrating the effect of KDM2A on liver function. Here, we established a novel liver-specific Kdm2a knockout mouse model to evaluate KDM2A's role in liver functions. An inducible hepatic deletion of Kdm2a, Alb-Cre-Kdm2afl/fl (Kdm2a KO), was generated by crossing the Kdm2a floxed mice (Kdm2afl/fl) we established with commercial albumin-Cre transgenic mice (B6.Cg-Tg(Alb-cre)21Mgn/J). We show that under a normal diet, Kdm2a KO mice exhibited increased serum alanine aminotransferase (ALT) activity, L-type triglycerides (TG) levels, and liver glycogen levels vs. WT (Kdm2afl/fl) animals. These changes were further enhanced in Kdm2a liver KO mice in high-fat diet (HFD) conditions. We also observed a significant increase in NF-κB target gene expression in Kdm2a liver KO mice under HFD conditions. Similarly, the KO mice exhibited increased immune cell infiltration. Collectively, these data suggest liver-specific KDM2A deficiency may enhance inflammation in the liver, potentially through NF-κB activation, and lead to liver dysfunction. Our study also suggests that the established Kdm2afl/fl mouse model may serve as a powerful tool for studying liver-related metabolic diseases.


Subject(s)
Liver Diseases , NF-kappa B , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Liver/metabolism , Inflammation/genetics , Inflammation/metabolism , Signal Transduction , Liver Diseases/metabolism
2.
Cancers (Basel) ; 15(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835439

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, with a mere 5-year survival of ~10%. This highlights the urgent need for innovative treatment options for PDAC patients. The nuclear factor κB (NF-κB) is a crucial transcription factor that is constitutively activated in PDAC. It mediates the transcription of oncogenic and inflammatory genes that facilitate multiple PDAC phenotypes. Thus, a better understanding of the mechanistic underpinnings of NF-κB activation holds great promise for PDAC diagnosis and effective therapeutics. Here, we report a novel finding that the p65 subunit of NF-κB is O-GlcNAcylated at serine 550 and 551 upon NF-κB activation. Importantly, the overexpression of either serine-to-alanine (S-A) single mutant (S550A or S551A) or double mutant (S550A/S551A) of p65 in PDAC cells impaired NF-κB nuclear translocation, p65 phosphorylation, and transcriptional activity, independent of IκBα degradation. Moreover, the p65 mutants downregulate a category of NF-κB-target genes, which play a role in perpetuating major cancer hallmarks. We further show that overexpression of the p65 mutants inhibited cellular proliferation, migration, and anchorage-independent growth of PDAC cells compared to WT-p65. Collectively, we discovered novel serine sites of p65 O-GlcNAcylation that drive NF-κB activation and PDAC phenotypes, thus opening new avenues by inhibiting the NF-κB O-GlcNAcylation enzyme, O-GlcNAc transferase (OGT), for PDAC treatment in the future.

3.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203325

ABSTRACT

Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC-the culprit for possible CRC relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic and epigenetic changes are well recognized to be responsible for the stepwise development of CRC malignancy. In this review, we focus on detailed genetic alteration information about the nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we provide deep insight into different CRC research models, with a particular focus on patient-derived xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB signaling may hold great promise for novel therapeutic development in CRC. Future endeavors may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell (hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.) to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing Biobanks, etc., may further pave the way for the development of innovative personalized medicine to treat CRC in the future.


Subject(s)
Colorectal Neoplasms , NF-kappa B , Humans , Animals , NF-kappa B/genetics , Signal Transduction/genetics , Precision Medicine , Axoneme , Disease Models, Animal , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Protein-Arginine N-Methyltransferases
SELECTION OF CITATIONS
SEARCH DETAIL
...