Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Pharmaceutics ; 16(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931930

ABSTRACT

Novel antifungal drugs are urgently needed to treat candidiasis caused by the emerging fungal multidrug-resistant pathogen Candida auris. In this study, the most cost-effective drug repurposing technology was adopted to identify an appropriate option among the 1615 clinically approved drugs with anti-C. auris activity. High-throughput virtual screening of 1,3-beta-glucanosyltransferase inhibitors was conducted, followed by an analysis of the stability of 1,3-beta-glucanosyltransferase drug complexes and 1,3-beta-glucanosyltransferase-dutasteride metabolite interactions and the confirmation of their activity in biofilm formation and planktonic growth. The analysis identified dutasteride, a drug with no prior antifungal indications, as a potential medication for anti-auris activity in seven clinical C. auris isolates from Saudi Arabian patients. Dutasteride was effective at inhibiting biofilm formation by C. auris while also causing a significant reduction in planktonic growth. Dutasteride treatment resulted in disruption of the cell membrane, the lysis of cells, and crushed surfaces on C. auris, and significant (p-value = 0.0057) shrinkage in the length of C. auris was noted at 100,000×. In conclusion, the use of repurposed dutasteride with anti-C. auris potential can enable rapid recovery in patients with difficult-to-treat candidiasis caused by C. auris and reduce the transmission of nosocomial infection.

2.
J Infect Public Health ; 17(7): 102463, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38833914

ABSTRACT

BACKGROUND: Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS: The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS: The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS: The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.


Subject(s)
Anti-Bacterial Agents , Feces , Genome, Bacterial , Microbial Sensitivity Tests , Humans , Anti-Bacterial Agents/pharmacology , Feces/microbiology , Gram-Positive Bacterial Infections/microbiology , Genomics , Saudi Arabia , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification , RNA, Ribosomal, 16S/genetics , Drug Resistance, Bacterial/genetics , Whole Genome Sequencing , Tertiary Care Centers , Cross Infection/microbiology , Phenotype
3.
J Family Community Med ; 31(2): 148-152, 2024.
Article in English | MEDLINE | ID: mdl-38800796

ABSTRACT

BACKGROUND: Klebsiella ozaenae (K. ozaenae), a forgotten pathogen that normally colonizes the upper respiratory mucosa, can be associated with severe and invasive infections. The objectives of this study were to determine the frequency of isolation of K. ozaenae at the microbiology laboratory in a tertiary hospital and the scope of diseases associated with it and to characterize its antimicrobial susceptibility pattern. MATERIALS AND METHODS: This cross-sectional study analyzed the retrospective data, from 2002 to 2021, on cases with laboratory-confirmed isolation of K. ozaenae at a tertiary care hospital. The primary outcome was to identify the scope of K. ozaenae infections and their antimicrobial susceptibility patterns. K. ozaenae isolation was done by cultivation on microbiological culture media, whereas its identification and antimicrobial susceptibility pattern were performed using either Microscan or Vitek automated systems. Data was gathered and analyzed in Excel. The percentage of resistance was calculated as the number of resistant isolates from the total isolates multiplied by 100. Similarly, the percentage of sensitivity was calculated as the number of sensitive isolates from total isolates multiplied by 100. RESULTS: K. ozaenae was detected in 59 cases during the study period. K. ozaenae was associated with urinary tract infections (39%), nasal infections (18.6%), other respiratory tract infections including sinusitis, bronchiectasis, and pneumonia (16.9%), and wound infections (15.3%). It was also associated with invasive infections such as bacteremia (3.4%) and abscesses (3.4%). K. ozaenae showed susceptibility to multiple antibiotic classes, but was resistant to ampicillin, piperacillin, nalidixic acid, and nitrofurantoin. K. ozaenae isolates from urinary tract infections had higher antibiotic resistance percentage than isolates from other infections, particularly to amoxicillin/clavulanic acid (P = 0.007, 95% confidence interval [CI]: 1.84-375), ciprofloxacin (P < 0.0001, 95% CI: 4.6-111.2), and trimethoprim/sulfamethoxazole (P < 0.001, 95% CI: 3.1-63.6). CONCLUSION: Our data show that K. ozaenae is a pathogen with a spectrum of diseases wider than expected and a unique antibiotic susceptibility pattern in urinary tract infections.

4.
Infect Drug Resist ; 17: 1147-1152, 2024.
Article in English | MEDLINE | ID: mdl-38529069

ABSTRACT

Background: Urinary tract infection (UTI) caused by V. cholerae is rare and less common. V. cholerae is a Gram-negative bacterium motile using single polar flagellum and, originally, is a waterborne microbe found in aquatic and estuarine environments. Toxigenic V. cholerae is well-known as a causative agent of acute and excessive watery diarrhea after ingesting food and water contaminated with this bacterium. Case Presentation: A 27-year-old male patient presented to the emergency department on 17th July 2021 with burning micturition, normal vital signs, and no fever, vomiting, or diarrhea. In 2017, the patient complained of short stature and vitamin D deficiency. He was on human growth hormone from January 2018 till October 2019. The diagnosis was V. cholerae Non-O1/non-O139 urinary tract infection (UTI). Considering a urinary tract infection, empirical treatment with Lornoxicam and Ciprofloxacin was initiated, while the result of urine culture was still pending. The patient was discharged on the same day and without any complications. Conclusion: V. cholerae non-O1/non-O139 is primarily a marine inhabitant and is associated with sporadic cases resulting in cholera-like diarrhea after consumption of contaminated seafood and exposure to seawater. Extraintestinal infection associated with this bacterium should no longer be ignored as this change in the behavior of cholera bacteria mechanism of pathogenicity might be related to some associated virulence genes.

5.
Biology (Basel) ; 12(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37887006

ABSTRACT

We report on a highly virulent, multidrug-resistant strain of Enterococcus faecalis IRMC827A that was found colonizing a long-term male patient at a tertiary hospital in Khobar, Saudi Arabia. The E. faecalis IRMC827A strain carries several antimicrobial drug resistance genes and harbours mobile genetic elements such as Tn6009, which is an integrative conjugative element that can transfer resistance genes between bacteria and ISS1N via an insertion sequence. Whole-genome-sequencing-based antimicrobial susceptibility testing on strains from faecal samples revealed that the isolate E. faecalis IRMC827A is highly resistant to a variety of antibiotics, including tetracycline, doxycycline, minocycline, dalfopristin, virginiamycin, pristinamycin, chloramphenicol, streptomycin, clindamycin, lincomycin, trimethoprim, nalidixic acid and ciprofloxacin. The isolate IRMC827A carries several virulence factors that are significantly associated with adherence, biofilm formation, sortase-assembled pili, manganese uptake, antiphagocytosis, and spreading factor of multidrug resistance. The isolate also encompasses two mutations (G2576T and G2505A) in the 23S rRNA gene associated with linezolid resistance and three more mutations (gyrA p.S83Y, gyrA p.D759N and parC p.S80I) of the antimicrobial resistance phenotype. The findings through next-generation sequencing on the resistome, mobilome and virulome of the isolate in the study highlight the significance of monitoring multidrug-resistant E. faecalis colonization and infection in hospitalized patients. As multidrug-resistant E. faecalis is a serious pathogen, it is particularly difficult to treat and can cause fatal infections. It is important to have quick and accurate diagnostic tests for multidrug-resistant E. faecalis, to track the spread of multidrug-resistant E. faecalis in healthcare settings, and to improve targeted interventions to stop its spread. Further research is necessary to develop novel antibiotics and treatment strategies for multidrug-resistant E. faecalis infections.

6.
Comput Struct Biotechnol J ; 21: 4261-4276, 2023.
Article in English | MEDLINE | ID: mdl-37701018

ABSTRACT

There is a global health concern associated with the emergence of the multidrug-resistant (MDR) fungus Candida auris, which has significant mortality rates. Finding innovative and distinctive anti-Candida compounds is essential for treating infections caused by MDR C. auris. A bacterial strain with anti-Candida activity was isolated and identified using 16 S rRNA gene sequencing. The whole genome was sequenced to identify biosynthesis-related gene clusters. The pathogenicity and cytotoxicity of the isolate were analyzed in Candida and HFF-1 cell lines, respectively. This study set out to show that whole-genome sequencing, cytotoxicity testing, and pathogenicity analysis combined with genome mining and comparative genomics can successfully identify biosynthesis-related gene clusters in native bacterial isolates that encode antifungal natural compounds active against Candida albicans and C. auris. The native isolate MR14M3 has the ability to inhibit C. auris (zone of inhibition 25 mm) and C. albicans (zone of inhibition 25 mm). The 16 S rRNA gene sequence of MR14M3 aligned with Bacillus amyloliquefaciens with similarity (100%). Bacillus amyloliquefaciens MR14M3 establishes bridges of intercellular nanotubes (L 258.56 ± 35.83 nm; W 25.32 ± 6.09 nm) connecting neighboring cells. Candida cell size was reduced significantly, and crushed phenotypes were observed upon treatment with the defused metabolites of B. amyloliquefaciens MR14M3. Furthermore, the pathogenicity of B. amyloliquefaciens MR14M3 on Candida cells was observed through cell membrane disruption and lysed yeast cells. The whole-genome alignment of the MR14M3 genome (3981,643 bp) using 100 genes confirmed its affiliation with Bacillus amyloliquefaciens. Genome mining analysis revealed that MR14M3-coded secondary metabolites are involved in the biosynthesis of polyketides (PKs) and nonribosomal peptide synthases (NRPSs), including 11 biosynthesis-related gene clusters with one hundred percent similarity. Highly conserved biosynthesis-related gene clusters with anti-C. albicans and anti-C. auris potentials and cytotoxic-free activity of B. amyloliquefaciens MR14M3 proposes the utilization of Bacillus amyloliquefaciens MR14M3 as a biofactory for an anti-Candida auris and anti-C. albicans compound synthesizer.

7.
Antibiotics (Basel) ; 12(9)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37760721

ABSTRACT

Extensive drug resistance to bacterial infections in hospitalised patients is accompanied by high morbidity and mortality rates due to limited treatment options. This study investigated the clinical outcomes of single and combined antibiotic therapies in extensive (XDR), multidrug-resistant (MDR) and susceptible strains (SS) of hospital-acquired infections (HAIs). Cases of hospital-associated drug-resistant infections (HADRIs) and a few susceptible strains from hospital wards were selected for this study. Bacteria identifications (IDs) and antimicrobial susceptibility tests (ASTs) were performed with a Vitek 2 Compact Automated System. Patients' treatment types and clinical outcomes were classified as alive improved (AI), alive not improved (ANI), or died. The length of hospital stay (LOHS) was acquired from hospital records. The HAI pathogens were Acinetobacter baumannii (28%), Escherichia coli (26%), Klebsiella pneumoniae (22%), Klebsiella (2%) species, Pseudomonas aeruginosa (12%), Proteus mirabilis (4%), and other Enterobacteriaceae. They were MDR (40.59%), XDR (24.75%), carbapenem-resistant Enterobacteriaceae (CRE, 21.78%) and susceptible (12%) strains. The treatments were either monotherapy or combined therapy with different outcomes. Monotherapy produced positive significant outcomes with E. coli infections, while for P. aeruginosa, there were no differences between the number of infections treated with either mono/combined therapies (50% each). Nonetheless, combined therapy had significant effects (p < 0.05) as a treatment for A. baumannii and K. pneumoniae infections. Clinical outcomes and LOHS varied with infecting bacteria. The prevalence of XDR and MDR HAIs was found to be significantly high, with no association with treatment type, LOHS, or outcome.

8.
Toxins (Basel) ; 15(6)2023 05 25.
Article in English | MEDLINE | ID: mdl-37368661

ABSTRACT

Clostridium perfringens is a spore-forming, Gram-positive anaerobic pathogen that causes several disorders in humans and animals. A multidrug-resistant Clostridium strain was isolated from the fecal sample of a patient who was clinically suspected of gastrointestinal infection and had a recent history of antibiotic exposure and diarrhea. The strain was identified by 16s rRNA sequencing as Clostridium perfringens. The strain's pathogenesis was analyzed through its complete genome, specifically antimicrobial resistance-related genes. The Clostridium perfringens IRMC2505A genome contains 19 (Alr, Ddl, dxr, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, and S12p) antibiotic-susceptible genetic species according to the k-mer-based detection of antimicrobial resistance genes. Genome mapping using CARD and VFDB databases revealed significant (p-value = 1 × 10-26) genes with aligned reads against antibiotic-resistant genes or virulence factors, including phospholipase C, perfringolysin O, collagenase, hyaluronidase, alpha-clostripain, exo-alpha-sialidase, and sialidase activity. In conclusion, this is the first report on C. perfringens from Saudi Arabia that conducted whole genome sequencing of IRMC2505A and confirmed the strain as an MDR bacterium with several virulence factors. Developing control strategies requires a detailed understanding of the epidemiology of C. perfringens, its virulence factors, and regional antimicrobial resistance patterns.


Subject(s)
Clostridium Infections , Clostridium perfringens , Animals , Humans , Virulence Factors/genetics , RNA, Ribosomal, 16S , Genomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple , Clostridium Infections/microbiology
9.
J Med Microbiol ; 72(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36763078

ABSTRACT

Introduction. Using rapid antigen diagnostic tests (RADTs) in clinical practice has shown excellent specificity but often has diminished sensitivity.Gap Statement. Local data for evaluating the diagnostic performance of a new fluorescence-based RADT and its influence on the antibiotic prescription rate are not available.Aim. To evaluate the accuracy of fluorescent immunoassay (FIA)-RADTs for diagnosing group A streptococcal (GAS) pharyngitis among children and its estimated effect as a point of care test (POCT) on the antibiotic prescription rate at the paediatric emergency department.Methodology. A prospective study was conducted, comprising children 3 to 14 years old presenting with pharyngitis. Throat swab culture and FIA-RADTs were performed on all samples. Conventional PCR was performed on the discordant samples.Results. A total of 246 children were included in this study. The sensitivity, specificity, and positive and negative predictive values of the FIA-RADT, based on culture results and PCR detection combined, were 95.6, 96.8, 94.6 and 97.4 %, respectively. Antibiotics have been prescribed to 162 (65.9 %) children; however, if FIA-RADTs had been added in the clinical practice as a POCT, only 92 (37.4 %) children would have received antibiotics in total. Additionally, implementation of FIA-RADTs would significantly reduce the antibiotic prescription rate from 48.8 and 60.6 % to 9.5 and 31.9 % among patients with clinical scores of 2 and 3, respectively.Conclusion. The new FIA-RADT is simple, prompt and reliable. It is helpful in clinical settings and may be used to reduce antibiotic overprescription, especially for children who have a low risk for GAS pharyngitis, according to the clinical score.


Subject(s)
Pharyngitis , Streptococcal Infections , Child , Humans , Child, Preschool , Adolescent , Anti-Bacterial Agents/therapeutic use , Prospective Studies , Streptococcal Infections/diagnosis , Streptococcal Infections/drug therapy , Sensitivity and Specificity , Antigens, Bacterial , Streptococcus pyogenes , Pharyngitis/diagnosis , Pharyngitis/drug therapy , Prescriptions , Emergency Service, Hospital
10.
Saudi Med J ; 43(10): 1128-1135, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36261204

ABSTRACT

OBJECTIVES: To describe the frequency of cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA) virulence genes and clarithromycin resistance-associated mutations among Helicobacter pylori (H. pylori) clinical isolates from Eastern Saudi Arabia. METHODS: A cross-sectional study was carried out between July 2020 and June 2021 in a tertiary hospital in AL-Khobar, Saudi Arabia. A total of 34 H. pylori isolates were obtained from gastric biopsies of patients with dyspepsia. The existence of the virulence genes was studied by polymerase chain reaction and the gene fragment of the 23s ribosomal subunit (23s rRNA) gene was sequenced. RESULTS: All isolates harbored the CagA gene. Approximately 97.1% (33/34) isolates were positive using the VacA M primer and 91.2% (31/34) isolates were positive using the VacA S primer. The most frequent allelic combination was S2/M2/cag (60%), followed by S1/M2/cag (26.7%), S1/M1/cag (10%), and S2/M1/cag (3.3%). Approximately 6.5% isolates harbored the A2142G mutation and 29% isolates harbored the A2143G mutation. One isolate contained the mutation T2182C. The phylogenetic analysis showed that 58% isolates clustered with the regional and global isolates while the remaining 42% isolates seemed to be specifically circulating in Saudi Arabia. Most of the patients (73.5%) had already underwent a previous H. pylori eradication therapy. CONCLUSION: We showed that there is a regional variation in the frequency of the virulence genes among H. pylori isolates. Additionally, we showed the frequency of 23s rRNA mutations related to clarithromycin resistance in Saudi Arabia.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Humans , Helicobacter pylori/genetics , Clarithromycin/pharmacology , Clarithromycin/therapeutic use , RNA, Ribosomal, 23S/genetics , Helicobacter Infections/drug therapy , Cross-Sectional Studies , Phylogeny , Saudi Arabia , Antigens, Bacterial/genetics , Antigens, Bacterial/therapeutic use , Drug Resistance, Bacterial/genetics , Bacterial Proteins/genetics , Cytotoxins/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Genotype
11.
Pharmaceutics ; 14(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297684

ABSTRACT

Candida auris (C. auris), an emerging multidrug-resistant microorganism, with limited therapeutical options, is one of the leading causes of nosocomial infections. The current study includes 19 C. auris strains collected from King Fahd Hospital of the University and King Fahad Specialist Hospital in Dammam, identified by 18S rRNA gene and ITS region sequencing. Drug-resistance-associated mutations in ERG11, TAC1B and FUR1 genes were screened to gain insight into the pattern of drug resistance. Molecular identification was successfully achieved using 18S rRNA gene and ITS region and 5 drug-resistance-associated missense variants identified in the ERG11 (F132Y and K143R) and TAC1B (H608Y, P611S and A640V) genes of C. auris strains, grouped into 3 clades. The prophylactic and therapeutic application of hydrothermally synthesized Ag-silicalite-1 (Si/Ag ratio 25) nanomaterial was tested against the 3 clades of clinical C. auris strains. 4wt%Ag/TiZSM-5 prepared using conventional impregnation technique was used for comparative study, and nano formulations were characterized using different techniques. The antibiofilm activity of nanomaterials was tested by cell kill assay, scanning electron microscopy (SEM) and light microscopy. Across all the clades of C. auris strains, 4 wt%Ag/TiZSM-5 and Ag-silicalite-1 demonstrated a significant (p = 1.1102 × 10-16) inhibitory effect on the biofilm's survival rate: the lowest inhibition value was (10%) with Ag-silicalite-1 at 24 and 48 h incubation. A profound change in morphogenesis in addition to the reduction in the number of C.auris cells was shown by SEM and light microscopy. The presence of a high surface area and the uniform dispersion of nanosized Ag species displays enhanced anti-Candida activity, and therefore it has great potential against the emerging multidrug-resistant C. auris.

12.
J Fungi (Basel) ; 8(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35887498

ABSTRACT

Candida auris is a globally-emerging pathogen that is correlated to nosocomial infections and high mortality rates, causing major outbreaks in hospitals and serious public health concerns worldwide. This study investigated the antifungal activity of silver nanoparticles (AgNPs) on clinical isolates of C. auris. A total of eight clinical isolates were collected from blood, urine, ear swab, and groin. C. auris was confirmed by MALDI-TOF MS, and gene sequencing. All isolates confirmed as C. auris were subjected to antimicrobial agents, including amphotericin B, fluconazole, caspofungin, voriconazole, micafungin, and flucytosine. A serial dilution of a silver nanoparticles solution was prepared to test antifungal susceptibility testing under planktonic conditions. Moreover, an antibiofilm activity assay was determined using a colony-forming assay and a cell viability assay by a live−dead yeast kit. Significant antifungal and antibiofilm activity of AgNPs was detected against all isolates; MIC was <6.25 µg/mL, the range of MFC was from 6.25 to 12.5 µg/mL for all isolates, and the highest value of IC50 was 3.2 µg/mL. Silver nanomaterials could represent a possible antimicrobial agent to prevent outbreaks caused by C. auris infections.

13.
Article in English | MEDLINE | ID: mdl-35682419

ABSTRACT

Rapid antigen detection of SARS-CoV-2 has been widely used. However, there is no consensus on the best sampling method. This study aimed to determine the level of agreement between SARS-CoV-2 fluorescent detection and a real-time reverse-transcriptase polymerase chain reaction (rRT-PCR), using different swab methods. Fifty COVID-19 and twenty-six healthy patients were confirmed via rRT-PCR, and each patient was sampled via four swab methods: oropharyngeal (O), nasal (N), spit saliva (S), and combined O/N/S swabs. Each swab was analyzed using an immunofluorescent Quidel system. The combined O/N/S swab provided the highest sensitivity (86%; Kappa = 0.8), followed by nasal (76%; Kappa = 0.68), whereas the saliva revealed the lowest sensitivity (66%; kappa = 0.57). Further, when considering positive detection in any of the O, N, and S samples, excellent agreements with rRT-PCR were achieved (Kappa = 0.91 and 0.97, respectively). Finally, among multiple factors, only patient age revealed a significant negative association with antigenic detection in the saliva. It is concluded that immunofluorescent detection of SARS-CoV-2 antigen is a reliable method for rapid diagnosis under circumstances where at least two swabs, one nasal and one oropharyngeal, are analyzed. Alternatively, a single combined O/N/S swab would improve the sensitivity in contrast to each site swabbed alone.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity , Specimen Handling/methods
14.
Comput Intell Neurosci ; 2022: 1615528, 2022.
Article in English | MEDLINE | ID: mdl-35586085

ABSTRACT

For the enormous growth and the hysterical impact of undocumented malicious software, otherwise known as Zero-Day malware, specialized practices were joined to implement systems capable of detecting these kinds of software to avert possible disastrous consequences. Owing to the nature of developed Zero-Day malware, distinct evasion tactics are used to remain stealth. Hence, there is a need for advance investigations of the methods that can identify such kind of malware. Machine learning (ML) is among the promising techniques for such type of predictions, while the sandbox provides a safe environment for such experiments. After thorough literature review, carefully chosen ML techniques are proposed for the malware detection, under Cuckoo sandboxing (CS) environment. The proposed system is coined as Zero-Day Vigilante (ZeVigilante) to detect the malware considering both static and dynamic analyses. We used adequate datasets for both analyses incorporating sufficient samples in contrast to other studies. Consequently, the processed datasets are used to train and test several ML classifiers including Random Forest (RF), Neural Networks (NN), Decision Tree (DT), k-Nearest Neighbor (kNN), Naïve Bayes (NB), and Support Vector Machine (SVM). It is observed that RF achieved the best accuracy for both static and dynamic analyses, 98.21% and 98.92%, respectively.


Subject(s)
Algorithms , Machine Learning , Bayes Theorem , Neural Networks, Computer , Software , Support Vector Machine
15.
PLoS One ; 17(4): e0266603, 2022.
Article in English | MEDLINE | ID: mdl-35413090

ABSTRACT

Most of the cases of Middle East respiratory syndrome coronavirus (MERS-CoV) were reported in Saudi Arabia. Dipeptidyl peptidase-4 (DPP4) was identified as the receptor for the virus. The level of soluble DPP4 (sDPP4) was found to be reduced in MERS-CoV infected patients while high levels of sDPP4 were suggested to be protective against MERS-CoV in animal models. We investigated whether the Saudi population has lower levels of sDPP4 which makes them more susceptible to MERS-CoV infection and, therefore, could explain the larger number of cases from the country. Blood samples were collected from 219 Saudi blood donors and 200 blood donors from other ethnic groups. The plasma level of sDPP4 was measured by ELISA and the following SNPs in the DPP4 gene; rs35128070, rs1861978, rs79700168, and rs17574, were genotyped by TaqMan SNP genotyping assay. The average level of plasma sDDP4 was significantly lower in Saudis than other Arabs and non-Arabs (P value 0.0003 and 0.012, respectively). The genotypes AG of rs35128070 and GT of rs1861978 were significantly associated with lower sDPP4 among Saudis (P value 0.002 for each). While both genotypes AA and AG of rs79700168 and rs17574 were associated with significantly lower average sDPP4 level in Saudis compared to other ethnic groups (P value 0.031 and 0.032, and 0.027 and 0.014, respectively). Herein, we report that the Saudi population has lower levels of plasma sDPP4 than other ethnic groups, which is associated with genetic variants in the DPP4 gene. This may have contributed to increase the susceptibility of the Saudi population to MERS-CoV infection and could be a factor in the long-lasting persistence of the virus in the country.


Subject(s)
Coronavirus Infections , Dipeptidyl Peptidase 4 , Middle East Respiratory Syndrome Coronavirus , Animals , Dipeptidyl Peptidase 4/blood , Disease Susceptibility , Endemic Diseases , Humans , Risk Factors , Saudi Arabia/epidemiology
16.
J Infect Public Health ; 15(1): 142-151, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34764042

ABSTRACT

BACKGROUND: The rapid increase in coronavirus disease 2019 (COVID-19) cases during the subsequent waves in Saudi Arabia and other countries prompted the Saudi Critical Care Society (SCCS) to put together a panel of experts to issue evidence-based recommendations for the management of COVID-19 in the intensive care unit (ICU). METHODS: The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. All members completed an electronic conflict of interest disclosure form. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We identified relevant systematic reviews and clinical trials, then used the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach as well as the evidence-to-decision framework (EtD) to assess the quality of evidence and generate recommendations. RESULTS: The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions (immunomodulators, antiviral agents, and anticoagulants) for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations. CONCLUSION: The SCCS COVID-19 panel used the GRADE approach to formulate recommendations on therapy for COVID-19 in the ICU. The EtD framework allows adaptation of these recommendations in different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available.


Subject(s)
COVID-19 , Critical Care , Humans , Intensive Care Units , SARS-CoV-2 , Saudi Arabia
17.
Infect Drug Resist ; 14: 4097-4105, 2021.
Article in English | MEDLINE | ID: mdl-34675555

ABSTRACT

PURPOSE: Multiple studies worldwide have reported the clinical and epidemiological features of coronavirus disease 2019 (COVID-19), with limited reports from the Middle East. This study describes the clinical and epidemiological features of COVID-19 cases in the Eastern Province of Saudi Arabia and identified factors associated with the severity of illness. PATIENTS AND METHODS: This was an observational study of 341 COVID-19 cases. These cases were reported in the first three months after the first case in the country was identified. Clinical and demographic data were analyzed and described to identify the effects of age, sex, and ethnicity on illness severity. In addition, the duration of viral shedding and cycle threshold (Ct) values of real-time PCR were evaluated as predictors of severity. RESULTS: The median age was 45 years. Males were twice as likely to be infected than females (p <0.0001). The duration of viral shedding ranged from 9 to 36 days. The most common clinical presentations include fever, shortness of breath, cough, myalgia, sore throat, vomiting, and headache. Critical cases were significantly higher in men (23% vs 8.7%), senior adults (>65 years), individuals of Bengali ethnicity, and in patients with comorbidities including diabetes, hypertension, and dyslipidemia (p =0.001). The case fatality rate was found to be 10%. The fatality was significantly higher in males than females (13.8% vs 2.6%), and in Asians (17.9%) than Arabs (6%) and Africans (0) (p =0.002). No association was found between viral load, represented by the RT-PCR cycle threshold (Ct) values, and severity of illness. CONCLUSION: Age, sex, and ethnicity are important predictors of COVID-19 severity. The cycle threshold (Ct) of the SARS-CoV-2 RT-PCR test cannot be used as a predictor of the criticality of illness.

18.
Saudi J Med Med Sci ; 9(3): 241-247, 2021.
Article in English | MEDLINE | ID: mdl-34667471

ABSTRACT

BACKGROUND: Proper sealing of screw-access channels against microbial microleakage is advisable for the long-term success of screw-retained implant prosthesis. OBJECTIVE: This study aimed to compare the bacterial adhesion and microleakage with three restorative materials, namely, composite resin, acrylic resin and bis-acryl, that are used to cover the access channels of screw-retained implant prostheses, using polytetrafluoroethylene tape as a spacer material. MATERIALS AND METHODS: In this in vitro study, 18 titanium straight abutments (Hex-lock® Zimmer) were torqued into implant analogs, which were then subdivided into three groups. The samples of each group were filled with polytetrafluoroethylene tape and sealed with the three restorative materials (Group A: composite resin; Group B: acrylic resin; Group C: bis-acryl). Measurements of surface bacterial adhesion and internal microleakage were then recorded. The results were statistically analyzed using Kruskal-Wallis and Chi-square tests. RESULTS: No significant difference was found between the investigated materials in terms of their sealing effectiveness against microbial microleakage (P = 0.06). Regarding bacterial adhesion, composite resin showed the highest number of surface adhesion, but there was no significant difference between the three materials (P = 0.081). CONCLUSION: The results of this study suggest that composite resin, acrylic resin and bis-acryl materials could be used alternatively in sealing the implant access channel owing to no significant differences in terms of microleakage and bacterial adhesion.

19.
Comput Biol Med ; 135: 104654, 2021 08.
Article in English | MEDLINE | ID: mdl-34346317

ABSTRACT

COVID-19 is an infectious and pathogenic viral disease caused by SARS-CoV-2 that leads to septic shock, coagulation dysfunction, and acute respiratory distress syndrome. The spreading rate of SARS-CoV-2 is higher than MERS-CoV and SARS-CoV. The receptor-binding domain (RBD) of the Spike-protein (S-protein) interacts with the human cells through the host angiotensin-converting enzyme 2 (ACE2) receptor. However, the molecular mechanism of pathological mutations of S-protein is still unclear. In this perspective, we investigated the impact of mutations in the S-protein and their interaction with the ACE2 receptor for SAR-CoV-2 viral infection. We examined the stability of pathological nonsynonymous mutations in the S-protein, and the binding behavior of the ACE2 receptor with the S-protein upon nonsynonymous mutations using the molecular docking and MM_GBSA approaches. Using the extensive bioinformatics pipeline, we screened the destabilizing (L8V, L8W, L18F, Y145H, M153T, F157S, G476S, L611F, A879S, C1247F, and C1254F) and stabilizing (H49Y, S50L, N501Y, D614G, A845V, and P1143L) nonsynonymous mutations in the S-protein. The docking and binding free energy (ddG) scores revealed that the stabilizing nonsynonymous mutations show increased interaction between the S-protein and the ACE2 receptor compared to native and destabilizing S-proteins and that they may have been responsible for the virulent high level. Further, the molecular dynamics simulation (MDS) approach reveals the structural transition of mutants (N501Y and D614G) S-protein. These insights might help researchers to understand the pathological mechanisms of the S-protein and provide clues regarding mutations in viral infection and disease propagation. Further, it helps researchers to develop an efficient treatment approach against this SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Peptidyl-Dipeptidase A/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
20.
Saudi J Biol Sci ; 28(8): 4472-4477, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34354432

ABSTRACT

Clostridioides difficile infection (CDI) has become a threatening public health problem in the developed world. In the kingdom of Saudi Arabia, prevalence of CDI is still unknown due to limited surveillance protocols and diagnostic resources. We used a two-step procedure to study and confirm C. difficile cases. We also studied toxin profiles of these isolates. Stool samples were collected from symptomatic patients and clinically suspected of CDI for almost 12 months. Isolates were confirmed by culture method followed by 16S rRNA sequencing. Multiplex PCR was performed for the identification of toxin A, toxin B and binary toxin genes and compared to Gene Expert results. Out of the 47 collected samples, 27 were successfully grown on culture media. 18 samples were confirmed as C. difficile by both culture and 16S rRNA sequencing. Interestingly, the rest of the isolates (9 species) belonged to different genera. Our results showed 95% of samples were positive for both toxin A and B (tcdA, tcdB) and all samples exhibited the toxin gene regulator tcdC. All samples were confirmed negative for the binary toxin gene ctdB and 11% of the isolates were positive for ctdA gene. Interestingly, one isolate harbored the binary toxin gene (cdtA +) and tested negative for both toxins A and B. We believe that combining the standard culture method with molecular techniques can make the detection of C. difficile more accurate.

SELECTION OF CITATIONS
SEARCH DETAIL
...