Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Contrast Media Mol Imaging ; 2022: 5297709, 2022.
Article in English | MEDLINE | ID: mdl-36176933

ABSTRACT

Coronavirus 2019 (COVID-19) has become a pandemic. The seriousness of COVID-19 can be realized from the number of victims worldwide and large number of deaths. This paper presents an efficient deep semantic segmentation network (DeepLabv3Plus). Initially, the dynamic adaptive histogram equalization is utilized to enhance the images. Data augmentation techniques are then used to augment the enhanced images. The second stage builds a custom convolutional neural network model using several pretrained ImageNet models and compares them to repeatedly trim the best-performing models to reduce complexity and improve memory efficiency. Several experiments were done using different techniques and parameters. Furthermore, the proposed model achieved an average accuracy of 99.6% and an area under the curve of 0.996 in the COVID-19 detection. This paper will discuss how to train a customized smart convolutional neural network using various parameters on a set of chest X-rays with an accuracy of 99.6%.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Artificial Intelligence , COVID-19/diagnostic imaging , Humans , SARS-CoV-2 , Semantics
2.
Comput Intell Neurosci ; 2022: 7538643, 2022.
Article in English | MEDLINE | ID: mdl-36052051

ABSTRACT

A combination of environmental conditions may cause skin illness everywhere on the earth, and it is one of the most dangerous diseases that can develop as a result. A major goal in the selection of characteristics is to produce predictions about skin disease instances in connection with influencing variables, which is one of the most important tasks. As a consequence of the widespread usage of sensors, the amount of data collected in the health industry is disproportionately large when compared to data collected in other sectors. In the past, researchers have used a variety of machine learning algorithms to determine the relationship between illnesses and other disorders. Forecasting is a procedure that involves many steps, the most important of which are the preprocessing of any scenario and the selection of forecasting features. A major disadvantage of doing business in the health industry is a lack of data availability, which is particularly problematic when data is provided in an unstructured format. Filling in missing numbers and converting between various types of data take somewhat more than 70% of the total time. When dealing with missing data in machine learning applications, the mean, average, and median, as well as the stand mechanism, may all be employed to solve the problem. Previous research has shown that the characteristics chosen for a model's overall performance may have an influence on the overall performance of the model's overall performance. One of the primary goals of this study is to develop an intelligent algorithm for identifying relevant traits in models while simultaneously eliminating nonsignificant attributes that have an impact on model performance. To present a full view of the data, artificial intelligence techniques such as SVM, decision tree, and logistic regression models were used in conjunction with three separate feature combination methodologies, each of which was developed independently. As a consequence of this, their accuracy, F-measure, and precision are all raised by a factor of ten, respectively. We then have a list of the most important features, together with the weights that have been allocated to each of them.


Subject(s)
Artificial Intelligence , Skin Diseases , Algorithms , Humans , Logistic Models , Machine Learning
3.
Comput Intell Neurosci ; 2022: 9653513, 2022.
Article in English | MEDLINE | ID: mdl-36105634

ABSTRACT

The capacity to carry out one's regular tasks is affected to varying degrees by hearing difficulties. Poorer understanding, slower learning, and an overall reduction in efficiency in academic endeavours are just a few of the negative impacts of hearing impairments on children's performance, which may range from mild to severe. A significant factor in determining whether or not there will be a decrease in performance is the kind and source of impairment. Research has shown that the Artificial Neural Network technique is capable of modelling both linear and nonlinear solution surfaces in a trustworthy way, as demonstrated in previous studies. To improve the precision with which hearing impairment challenges are diagnosed, a neural network backpropagation approach has been developed with the purpose of fine-tuning the diagnostic process. In particular, it highlights the vital role performed by medical informatics in supporting doctors in the identification of diseases as well as the formulation of suitable choices via the use of data management and knowledge discovery. As part of the intelligent control method, it is proposed in this research to construct a Histogram Equalization (HE)-based Adaptive Center-Weighted Median (ACWM) filter, which is then used to segment/detect the OM in tympanic membrane images using different segmentation methods in order to minimise noise and improve the image quality. A tympanic membrane dataset, which is freely accessible, was used in all experiments.


Subject(s)
Algorithms , Otitis , Child , Humans , Neural Networks, Computer
4.
Comput Intell Neurosci ; 2022: 2613075, 2022.
Article in English | MEDLINE | ID: mdl-36105637

ABSTRACT

An adaptive fuzzy sliding control (AFSMC) approach is adopted in this paper to address the problem of angular position control and vibration suppression of rotary flexible joint systems. AFSMC consists of fuzzy-based singleton control action and switching control law. By adjusting fuzzy parameters with the self-learning ability to discard system nonlinearities and uncertainties, singleton control based on fuzzy approximation theory can estimate the perfect control law of feedback linearization. To enhance robustness, an additional switching control law is incorporated to reduce the approximation error between the derived singleton control action and the perfect control law of feedback linearization. AFSMC's closed-loop stability will be demonstrated via sliding surface and Lyapunov function analysis of error function. In order to demonstrate the effectiveness of the AFSMC in tracking performance as well as its ability to respond to model uncertainties and external perturbations, simulations are carried out using Simulink and Matlab in order to demonstrate how well it adapts to these situations. Based on these results, it can be concluded that the AFSMC performs satisfactorily in terms of tracking.


Subject(s)
Feedback , Uncertainty
5.
Sensors (Basel) ; 21(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34640986

ABSTRACT

COVID-19 tracing applications have been launched in several countries to track and control the spread of viruses. Such applications utilize Bluetooth Low Energy (BLE) transmissions, which are short range and can be used to determine infected and susceptible persons near an infected person. The COVID-19 risk estimation depends on an epidemic model for the virus behavior and Machine Learning (ML) model to classify the risk based on time series distance of the nodes that may be infected. The BLE technology enabled smartphones continuously transmit beacons and the distance is inferred from the received signal strength indicators (RSSI). The educational activities have shifted to online teaching modes due to the contagious nature of COVID-19. The government policy makers decide on education mode (online, hybrid, or physical) with little technological insight on actual risk estimates. In this study, we analyze BLE technology to debate the COVID-19 risks in university block and indoor class environments. We utilize a sigmoid based epidemic model with varying thresholds of distance to label contact data with high risk or low risk based on features such as contact duration. Further, we train multiple ML classifiers to classify a person into high risk or low risk based on labeled data of RSSI and distance. We analyze the accuracy of the ML classifiers in terms of F-score, receiver operating characteristic (ROC) curve, and confusion matrix. Lastly, we debate future research directions and limitations of this study. We complement the study with open source code so that it can be validated and further investigated.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Smartphone , Software , Wireless Technology
6.
J Healthc Eng ; 2021: 3277988, 2021.
Article in English | MEDLINE | ID: mdl-34150188

ABSTRACT

The world has been facing the COVID-19 pandemic since December 2019. Timely and efficient diagnosis of COVID-19 suspected patients plays a significant role in medical treatment. The deep transfer learning-based automated COVID-19 diagnosis on chest X-ray is required to counter the COVID-19 outbreak. This work proposes a real-time Internet of Things (IoT) framework for early diagnosis of suspected COVID-19 patients by using ensemble deep transfer learning. The proposed framework offers real-time communication and diagnosis of COVID-19 suspected cases. The proposed IoT framework ensembles four deep learning models such as InceptionResNetV2, ResNet152V2, VGG16, and DenseNet201. The medical sensors are utilized to obtain the chest X-ray modalities and diagnose the infection by using the deep ensemble model stored on the cloud server. The proposed deep ensemble model is compared with six well-known transfer learning models over the chest X-ray dataset. Comparative analysis revealed that the proposed model can help radiologists to efficiently and timely diagnose the COVID-19 suspected patients.


Subject(s)
Artificial Intelligence , COVID-19 Testing , COVID-19/diagnosis , Internet of Things , SARS-CoV-2 , Brazil , China , Computer Simulation , Computer Systems , Databases, Factual , Deep Learning , Diagnosis, Computer-Assisted , Humans , Pattern Recognition, Automated , Radiography, Thoracic , United States , X-Rays
7.
Comput Intell Neurosci ; 2021: 7615106, 2021.
Article in English | MEDLINE | ID: mdl-34976044

ABSTRACT

During the past two decades, many remote sensing image fusion techniques have been designed to improve the spatial resolution of the low-spatial-resolution multispectral bands. The main objective is fuse the low-resolution multispectral (MS) image and the high-spatial-resolution panchromatic (PAN) image to obtain a fused image having high spatial and spectral information. Recently, many artificial intelligence-based deep learning models have been designed to fuse the remote sensing images. But these models do not consider the inherent image distribution difference between MS and PAN images. Therefore, the obtained fused images may suffer from gradient and color distortion problems. To overcome these problems, in this paper, an efficient artificial intelligence-based deep transfer learning model is proposed. Inception-ResNet-v2 model is improved by using a color-aware perceptual loss (CPL). The obtained fused images are further improved by using gradient channel prior as a postprocessing step. Gradient channel prior is used to preserve the color and gradient information. Extensive experiments are carried out by considering the benchmark datasets. Performance analysis shows that the proposed model can efficiently preserve color and gradient information in the fused remote sensing images than the existing models.


Subject(s)
Artificial Intelligence , Remote Sensing Technology
8.
Sensors (Basel) ; 20(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182577

ABSTRACT

Wireless networks are vulnerable to jamming attacks. Jamming in wireless communication becomes a major research problem due to ease in Unmanned Aerial Vehicle (UAV) launching and blocking of communication channels. Jamming is a subset of Denial of Service Attack (DoS) and an intentional interference where the malicious node disrupts the wireless communication by increasing the noise at the receiver node through transmission interference signal towards the target channel. In this work, the considered jammer is a UAV hovering around the target area to block the communication channel between two transceivers. We proposed a three-dimensional (3-D) UAV jamming localization scheme to track and detect the jammer position at each time step by employing a single boundary node observer. For this purpose, we developed two distributed Extended Kalman Filter (EKF) based schemes: (1) the Distributed EKF (DEKF) scheme using the information of the received power from the jammer at a single nearby boundary node only and (2) Distance Ratio aided Distributed EKF (DEKF-DR) based scheme utilizing an edge node in addition to a single boundary node. Extensive simulations are conducted in order to evaluate the performance of the proposed distributed algorithms for a 3-D trajectory and compared with that of the conventional Centralized EKF (EKF-Centr) based method (which is also modified for the 3-D scenario). The results show the clear supremacy of the proposed distributed algorithms with much lesser complexity in contrast to the conventional EKF-Centr technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...