Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Tissue Cell ; 89: 102449, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38924893

ABSTRACT

Despite recent improvements in oncology, diagnosis, and therapy, pancreatic cancer remains extremely difficult to cure due to its aggressive growth pattern with early invasion and distant metastases, chemoresistance, and a lack of effective screening modalities for early detection. Here, novel therapeutic approaches for treating pancreatic cancer are urgently needed. Recently, stem cells have drawn a lot of interest as a possible treatment for pancreatic cancer due to their ability to locate tumors. Though research over the last few decades has revealed some very exciting and promising new treatment approaches, the clinical success of these stem-cell based anti-cancer medicines has been quite limited. The most effective stem cell-mediated therapeutic options will only be available with a deeper understanding of the intricate molecular biology underlying pancreatic cancer and the subsequent identification of cancer stem cells as a novel target that promotes the growth of the cancer and resistance to chemotherapy. This review will highlight the stem cell based anti-cancer therapy targeting pancreatic cancer stem cells and different molecular signaling pathways. A particular focus will be on the therapeutic potential of naïve Stem cells, anti-cancer drug loaded stem cells, genetically engineered stem cells and exosomal miRNA released by stem cells in pancreatic cancer treatment. Similarly, the role of nanotechnology in stem cell based anticancer therapy will be further discussed to better implementation of these cell-based cancer therapy.

2.
Biomolecules ; 14(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38785930

ABSTRACT

Herpesvirus entry mediator (HVEM) is a molecular switch that can modulate immune responses against cancer. The significance of HVEM as an immune checkpoint target and a potential prognostic biomarker in malignancies is still controversial. This study aims to determine whether HVEM is an immune checkpoint target with inhibitory effects on anti-tumor CD4+ T cell responses in vitro and whether HVEM gene expression is dysregulated in patients with acute lymphocytic leukemia (ALL). HVEM gene expression in tumor cell lines and peripheral blood mononuclear cells (PBMCs) from ALL patients and healthy controls was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Tumor cells were left untreated (control) or were treated with an HVEM blocker before co-culturing with CD4+ T cells in vitro in a carboxyfluorescein succinimidyl ester (CFSE)-dependent proliferation assay. HVEM expression was upregulated in the chronic myelogenous leukemia cell line (K562) (FC = 376.3, p = 0.086) compared with normal embryonic kidney cells (Hek293). CD4+ T cell proliferation was significantly increased in the HVEM blocker-treated K562 cells (p = 0.0033). Significant HVEM differences were detected in ALL PBMCs compared with the controls, and these were associated with newly diagnosed ALL (p = 0.0011) and relapsed/refractory (p = 0.0051) B cell ALL (p = 0.0039) patients. A significant differentiation between malignant ALL and the controls was observed in a receiver operating characteristic (ROC) curve analysis with AUC = 0.78 ± 0.092 (p = 0.014). These results indicate that HVEM is an inhibitory molecule that may serve as a target for immunotherapy and a potential ALL biomarker.


Subject(s)
Biomarkers, Tumor , Receptors, Tumor Necrosis Factor, Member 14 , Humans , Receptors, Tumor Necrosis Factor, Member 14/metabolism , Receptors, Tumor Necrosis Factor, Member 14/genetics , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Male , Female , Prognosis , Middle Aged , Adult , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/immunology , K562 Cells , HEK293 Cells , Cell Proliferation , Aged , Cell Line, Tumor , Young Adult , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
3.
Cancers (Basel) ; 15(19)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37835585

ABSTRACT

The resistance to therapy and relapse in hepatocellular carcinoma (HCC) is highly attributed to hepatic cancer stem cells (HCSCs). HCSCs are under microenvironment control. This work aimed to assess the systemic effect of ellagic acid (EA) on the HCC microenvironment to decline HCSCs. Fifty Wistar rats were divided into six groups: negative control (CON), groups 2 and 3 for solvents (DMSO), and (OVO). Group 4 was administered EA only. The (HCC-M) group, utilized as an HCC model, administered CCL4 (0.5 mL/kg in OVO) 1:1 v/v, i.p) for 16 weeks. HCC-M rats were treated orally with EA (EA + HCC) 50 mg/kg bw for five weeks. Biochemical, morphological, histopathological, and immunohistochemical studies, and gene analysis using qRT-PCR were applied. Results revealed elevated liver injury biomarkers ALT, AST, ALP, and tumor biomarkers AFP and GGT, and marked nodularity of livers of HCC-M. EA effectively reduced the biomarkers and restored the altered structure of the livers. At the mRNA level, EA downregulated the expression of TGF-α, TGF-ß, and VEGF, and restored p53 expression. This induced an increase in apoptotic cells immunostained with caspase3 and decreased the CD44 immunostained HCSCs. EA could modulate the tumor microenvironment in the HCC rat model and ultimately target the HCSCs.

4.
J Biomol Struct Dyn ; 41(10): 4744-4755, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35510619

ABSTRACT

The coronavirus disease (COVID-19) pandemic has rapidly extended globally and killed approximately 5.83 million people all over the world. But, to date, no effective therapeutic against the disease has been developed. The disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enters the host cell through the spike glycoprotein (S protein) of the virus. Subsequently, RNA-dependent RNA polymerase (RdRp) and main protease (Mpro) of the virus mediate viral transcription and replication. Mechanistically inhibition of these proteins can hinder the transcription as well as replication of the virus. Recently oxysterols and its derivative, such as 25 (S)-hydroxycholesterol (25-HC) has shown antiviral activity against SARS-CoV-2. But the exact mechanisms and their impact on RdRp and Mpro have not been explored yet. Therefore, the study aimed to identify the inhibitory activity of 25-HC against the viral enzymes RdRp and Mpro simultaneously. Initially, a molecular docking simulation was carried out to evaluate the binding activity of the compound against the two proteins. The pharmacokinetics (PK) and toxicity parameters were analyzed to observe the 'drug-likeness' properties of the compound. Additionally, molecular dynamics (MD) simulation was performed to confirm the binding stability of the compound to the targeted protein. Furthermore, molecular mechanics generalized Born surface area (MM-GBSA) was used to predict the binding free energies of the compound to the targeted protein. Molecular docking simulation identified low glide energy -51.0 kcal/mol and -35.0 kcal/mol score against the RdRp and Mpro, respectively, where MD simulation found good binding stability of the compound to the targeted proteins. In addition, the MM/GBSA approach identified a good value of binding free energies (ΔG bind) of the compound to the targeted proteins. Therefore, the study concludes that the compound 25-HC could be developed as a treatment and/or prevention option for SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Hydroxycholesterols/pharmacology , Molecular Docking Simulation , Enzyme Inhibitors , Antiviral Agents/pharmacology , Molecular Dynamics Simulation , Protease Inhibitors
5.
Saudi J Biol Sci ; 30(2): 103519, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36561333

ABSTRACT

Human placental-derived mesenchymal stem cells (hPMSCs) are a promising candidate to inhibit the proliferation of hepatocellular carcinoma (HCC) cell lines such as HepG2. The effects of hPMSCs and their conditioned media on HepG2 are, however, still a mystery. As a result, the goal of this study was to look into the effects of hPMSCs and their conditioned media on HepG2 and figure out what was going on. Fluorescence-activated cell sorting and the MTT test were used to determine the percentage of cells that died (early apoptosis, late apoptosis). The DIO and DID colors were used to detect cell fusion and cell death in both cells. HepG2 cells were co-treated with hPMSCs or hPMSCs-conditioned medium (hPMSCs-CM) to reduce growth and promote apoptosis. Morphological changes were also seen in the 30 percent, 50 percent, and 60 percent cases. The secretion of cytokine was determined by the ELISA. Flow cytometry, caspase 9 immunofluorescence, qPCR (detection of Bax, Bcl-2, and ß-catenin genes), western blot, and immunophenotyping revealed that treatment with hPMSCs or hPMSCs-CM caused HepG2 cell death through apoptosis (detection of caspase 9, caspase 3 protein). HepG2 cell cycle arrest could be induced by hPMSCs and hPMSCs-CM. Following treatment with hPMSCs or hPMSCs-CM, HepG2 cell development was stopped in the G0/G1 phase. These treatments also inhibited HepG2 cells from migrating, with the greatest effect when the highest ratio/concentration of hPMSCs (70%) and hPMSCs-CM were used (90%). Our findings indicated that hPMSCs and hPMSCs-CM could be promising treatment options for liver cancer. To elucidate the proper effect, more research on liver cancer-induced rat/mice is needed.

6.
Front Pharmacol ; 13: 1027890, 2022.
Article in English | MEDLINE | ID: mdl-36457709

ABSTRACT

Alterations to the EGFR (epidermal growth factor receptor) gene, which primarily occur in the axon 18-21 position, have been linked to a variety of cancers, including ovarian, breast, colon, and lung cancer. The use of TK inhibitors (gefitinib, erlotinib, lapatinib, and afatinib) and monoclonal antibodies (cetuximab, panitumumab, and matuzumab) in the treatment of advanced-stage cancer is very common. These drugs are becoming less effective in EGFR targeted cancer treatment and developing resistance to cancer cell eradication, which sometimes necessitates stopping treatment due to the side effects. One in silico study has been conducted to identify EGFR antagonists using other compounds, databases without providing the toxicity profile, comparative analyses, or morphological cell death pattern. The goal of our study was to identify potential lead compounds, and we identified seven compounds based on the docking score and four compounds that were chosen for our study, utilizing toxicity analysis. Molecular docking, virtual screening, dynamic simulation, and in-vitro screening indicated that these compounds' effects were superior to those of already marketed medication (gefitinib). The four compounds obtained, ZINC96937394, ZINC14611940, ZINC103239230, and ZINC96933670, demonstrated improved binding affinity (-9.9 kcal/mol, -9.6 kcal/mol, -9.5 kcal/mol, and -9.2 kcal/mol, respectively), interaction stability, and a lower toxicity profile. In silico toxicity analysis showed that our compounds have a lower toxicity profile and a higher LD50 value. At the same time, a selected compound, i.e., ZINC103239230, was revealed to attach to a particular active site and bind more tightly to the protein, as well as show better in-vitro results when compared to our selected gefitinib medication. MTT assay, gene expression analysis (BAX, BCL-2, and ß-catenin), apoptosis analysis, TEM, cell cycle assay, ELISA, and cell migration assays were conducted to perform the cell death analysis of lung cancer and breast cancer, compared to the marketed product. The MTT assay exhibited 80% cell death for 75 µM and 100µM; however, flow cytometry analysis with the IC50 value demonstrated that the selected compound induced higher apoptosis in MCF-7 (30.8%) than in A549.

7.
Cells ; 11(21)2022 11 02.
Article in English | MEDLINE | ID: mdl-36359871

ABSTRACT

Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.


Subject(s)
Huntington Disease , Nervous System Diseases , Parkinson Disease , Animals , Nervous System Diseases/therapy , Stem Cell Transplantation , Huntington Disease/metabolism , Parkinson Disease/metabolism , Motor Neurons/pathology
8.
Curr Issues Mol Biol ; 44(10): 4838-4858, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36286044

ABSTRACT

The mortality of cancer patients with neuroblastoma is increasing due to the limited availability of specific treatment options. Few drug candidates for combating neuroblastoma have been developed, and identifying novel therapeutic candidates against the disease is an urgent issue. It has been found that muc-N protein is amplified in one-third of human neuroblastomas and expressed as an attractive drug target against the disease. The myc-N protein interferes with the bromodomain and extraterminal (BET) family proteins. Pharmacologically inhibition of the protein potently depletes MYCN in neuroblastoma cells. BET inhibitors target MYCN transcription and show therapeutic efficacy against neuroblastoma. Therefore, the study aimed to identify potential inhibitors against the BET family protein, specifically Brd4 (brodamine-containing protein 4), to hinder the activity of neuroblastoma cells. To identify effective molecular candidates against the disease, a structure-based pharmacophore model was created for the binding site of the Brd4 protein. The pharmacophore model generated from the protein Brd4 was validated to screen potential natural active compounds. The compounds identified through the pharmacophore-model-based virtual-screening process were further screened through molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity, and molecular dynamics (MD) simulation approach. The pharmacophore-model-based screening process initially identified 136 compounds, further evaluated based on molecular docking, ADME analysis, and toxicity approaches, identifying four compounds with good binding affinity and lower side effects. The stability of the selected compounds was also confirmed by dynamic simulation and molecular mechanics with generalized Born and surface area solvation (MM-GBSA) methods. Finally, the study identified four natural lead compounds, ZINC2509501, ZINC2566088, ZINC1615112, and ZINC4104882, that will potentially inhibit the activity of the desired protein and help to fight against neuroblastoma and related diseases. However, further evaluations through in vitro and in vivo assays are suggested to identify their efficacy against the desired protein and disease.

9.
Cells ; 10(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34944019

ABSTRACT

Patients suffering from Alzheimer's disease (AD) are still increasing worldwide. The development of (AD) is related to oxidative stress and genetic factors. This study investigated the therapeutic effects of ellagic acid (EA) on the entorhinal cortex (ERC), which plays a major role in episodic memory, in the brains of an AD rat model. AD was induced using AlCl3 (50 mg/kg orally for 4 weeks). Rats were divided into four groups: control, AD model, EA (treated with 50 mg/kg EA orally for 4 weeks), and ADEA (AD rats treated with EA after AlCl3 was stopped) groups. All rats were investigated for episodic memory using the novel object recognition test (NORT), antioxidant serum biomarkers, lipid peroxidation, histopathology of the ERC, and quantitative PCR for the superoxide dismutase (SOD) gene. EA therapy in AD rats significantly increased the discrimination index for NORT and the levels of SOD, glutathione, and total antioxidant capacity. Lipid peroxidation products were decreased, and the neurofibrillary tangles and neuritic plaques in the ERC sections were reduced after EA administration. The decrease in ERC thickness in the AD group, caused by caspase-3-mediated apoptosis and neurotoxicity due to amyloid precursor protein, was modulated by the increased SOD mRNA expression. Adjustment of the ERC antioxidant environment and decreased oxidative stress under EA administration enhanced SOD expression, resulting in the modulation of amyloid precursor protein toxicity and caspase-3-mediated apoptosis, thereby restoring episodic memory.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/genetics , Ellagic Acid/pharmacology , Entorhinal Cortex/drug effects , Superoxide Dismutase/genetics , Aluminum Chloride/toxicity , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Biomarkers/blood , Caspase 3/genetics , Disease Models, Animal , Entorhinal Cortex/physiopathology , Gene Expression Regulation/drug effects , Humans , Lipid Peroxidation/drug effects , Memory, Episodic , Open Field Test , Oxidative Stress/drug effects , Rats
10.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638812

ABSTRACT

Extracellular vesicles (EVs) carry important biomolecules, including metabolites, and contribute to the spread and pathogenesis of some viruses. However, to date, limited data are available on EV metabolite content that might play a crucial role during infection with the SARS-CoV-2 virus. Therefore, this study aimed to perform untargeted metabolomics to identify key metabolites and associated pathways that are present in EVs, isolated from the serum of COVID-19 patients. The results showed the presence of antivirals and antibiotics such as Foscarnet, Indinavir, and lymecycline in EVs from patients treated with these drugs. Moreover, increased levels of anti-inflammatory metabolites such as LysoPS, 7-α,25-Dihydroxycholesterol, and 15-d-PGJ2 were detected in EVs from COVID-19 patients when compared with controls. Further, we found decreased levels of metabolites associated with coagulation, such as thromboxane and elaidic acid, in EVs from COVID-19 patients. These findings suggest that EVs not only carry active drug molecules but also anti-inflammatory metabolites, clearly suggesting that exosomes might play a crucial role in negotiating with heightened inflammation during COVID-19 infection. These preliminary results could also pave the way for the identification of novel metabolites that might act as critical regulators of inflammatory pathways during viral infections.


Subject(s)
COVID-19/metabolism , Extracellular Vesicles/metabolism , Metabolome , SARS-CoV-2/physiology , Adult , Anti-Inflammatory Agents/metabolism , COVID-19/pathology , Extracellular Vesicles/pathology , Female , Humans , Male , Metabolomics , Middle Aged
11.
J Biomol Struct Dyn ; 38(4): 1214-1229, 2020 03.
Article in English | MEDLINE | ID: mdl-30896308

ABSTRACT

Milk fat globules (MFGs), which are secreted by the epithelial cells of the lactating mammary glands, account for the most of the nutritional value of milk. They are enveloped by the milk fat globule membrane (MFGM), a complex structure consisting of three phospholipid membrane monolayers and containing various lipids. Depending on the origin of milk, specific proteins accounts for 5-70% of the MFGM mass. Proteome of MFGMs includes hundreds of proteins, with nine major components being adipophilin, butyrophilin, cluster of differentiation 36, fatty acid binding protein, lactadherin, mucin 1, mucin 15, tail-interacting protein 47 (TIP47), and xanthine oxidoreductase. Two of the MFGM components, adipophilin and TIP47, belong to the five-member perilipin family of lipid droplet proteins. Adipophilin is involved in the formation of cytoplasmic lipid droplets and secretion of MFGs. This protein is also related to the formation of other lipid droplets that exist in most cell types, playing an important role in the transport of lipids from ER to the surface of lipid droplets. TIP47 acts as a cytoplasmic sorting factor for mannose 6-phosphate receptors and is recruited to the MFGM. Therefore, both adipophilin and TIP47 are moonlighting proteins, each possessing several unrelated functions. This review focuses on the main functions and specific structural features of adipophilin and TIP47, analyzes similarities and differences of these proteins among different species, and describes these proteins in the context of other members of the perilipin family.Communicated by Ramaswamy H. Sarma.


Subject(s)
Glycolipids/chemistry , Glycolipids/metabolism , Glycoproteins/chemistry , Glycoproteins/metabolism , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Milk Proteins/chemistry , Milk Proteins/metabolism , Perilipin-2/chemistry , Perilipin-2/metabolism , Animals , Female , Gene Expression Regulation , Glycolipids/genetics , Glycoproteins/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Lactation , Lipid Metabolism , Lipids , Membrane Proteins/genetics , Milk Proteins/genetics , Multigene Family , Perilipin-2/genetics , Protein Binding , Structure-Activity Relationship
12.
Stem Cells Dev ; 28(24): 1632-1645, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31650883

ABSTRACT

Age-related cellular changes and limited replicative capacity of adult mesenchymal stem cells (MSCs) are few of the challenges confronting stem cell research. MSCs from human fetal membranes (hFM-MSCs), including placental, umbilical cord, and amniotic membrane, are considered an alternative to adult MSCs. However, the effect of mothers' age on hFM-MSC cellular properties is still not clearly established. This study aimed to evaluate the effect of mothers' age on hFM-MSC telomere length, telomerase activity, and proliferation ability in three different age groups: GI (20-29 years), GII (30-39 years), and GIII (≥40 years). hFM samples were collected from pregnant women ≤37 weeks after obtaining consent. hFM-MSCs were isolated and cultured to characterize them by flow cytometry and assess proliferation by MTT assay and doubling time. Telomere length and expression levels of human telomerase reverse transcriptase were assessed by quantitative real-time polymerase chain reaction (qRT-RCR). hFM-MSCs in the three age groups were spindle-shaped, plastic-adherent, and exhibited high proliferation rates and strong expression of hMSC markers. GI showed the longest telomere length in hMSCs in various FM regions, whereas GIII showed the highest level of telomerase expression. There was no difference in telomere length between GII and GIII, and both groups showed the same hMSC characteristics. In conclusion, although the hFM-MSCs derived from different fetal membranes maintained the MSC characteristics in all study groups, the hFM-MSCs of older mothers had shorter telomeres and higher telomerase activity and proliferation rate than did those derived from younger mothers. Thus, the hFM-MSCs of older mothers could be unsuitable for expansion in vitro or stem cell therapy. Determination of telomere length and telomerase expression level of hFM might help characterizing and understanding the biological differences of hFM-MSCs in different age groups.


Subject(s)
Adult Stem Cells/enzymology , Mesenchymal Stem Cells/enzymology , Telomerase/genetics , Telomere Homeostasis/genetics , Adult , Adult Stem Cells/metabolism , Age Factors , Cell Differentiation/genetics , Cell Proliferation/genetics , Extraembryonic Membranes/enzymology , Extraembryonic Membranes/growth & development , Female , Flow Cytometry , Humans , Mesenchymal Stem Cells/metabolism , Mothers , Placenta/cytology , Pregnancy , Telomere/genetics , Umbilical Cord/growth & development , Umbilical Cord/metabolism
13.
Integr Cancer Ther ; 18: 1534735418809901, 2019.
Article in English | MEDLINE | ID: mdl-30373413

ABSTRACT

BACKGROUND: The role of alkaloids isolated from Rhazya stricta Decne (Apocynaceae family) (RS) in targeting genes involved in cancer and metastasis remains to be elucidated. OBJECTIVE: Identify and characterize new compounds from RS, which inhibit gene(s) involved in the survival, invasion, self-renewal, and metastatic processes of cancer cells. METHODS: Bioinformatics study was performed using HISAT2, stringtie, and ballgown pipeline to understand expressional differences between a normal epithelial cell line-MCF10A and MCF7. NMR and ATR-FTIR were performed to elucidate the structure of rhazyaminine (R.A), isolated from R stricta. Cell viability assay was performed using 0, 25, and 50 µg/mL of total extract of R stricta (TERS) and R.A, respectively, for 0, 24, and 48 hours, followed by scratch assay. In addition, total RNA was isolated for RNA- seq analysis of MCF7 cell line treated with R.A followed by qRT-PCR analysis of Bcl-2 gene. RESULTS: Deptor, which is upregulated in MCF7 compared with MCF10A as found in our bioinformatics study was downregulated by R.A. Furthermore, R.A effectively reduced cell viability to around 50% ( P < .05) and restricted cell migration in scratch assay. Thirteen genes, related to metastasis and cancer stem cells, were downregulated by R.A according to RNA- seq analysis. Additionally, qRT-PCR validated the downregulation of Bcl-2 gene in R.A-treated cells by less than 0.5 folds ( P < .05). CONCLUSION: R.A successfully downregulated key genes involved in apoptosis, cell survival, epithelial-mesenchymal transition, cancer stem cell proliferation, and Wnt signal transduction pathway making it an excellent "lead candidate" molecule for in vivo proof-of-concept studies.


Subject(s)
Apocynaceae/chemistry , Apoptosis/drug effects , Down-Regulation/drug effects , Genes, bcl-2/drug effects , Plant Extracts/pharmacology , Alkaloids/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial Cells/drug effects , Humans , MCF-7 Cells , Neoplastic Stem Cells/drug effects , Signal Transduction/drug effects , Up-Regulation/drug effects
14.
Stem Cells Int ; 2018: 8058979, 2018.
Article in English | MEDLINE | ID: mdl-30224923

ABSTRACT

Cross talk, mediated by exosomes, between normal stem cells and cancer stem cells (CSCs) in the tumor microenvironment has been given less attention so far. In addition, no publications are available in the literature that address the in vivo impact of exosomes derived from CSCs and mesenchymal stem cells (MSCs) on progression of long-term hepatocellular carcinoma (HCC). Herein, we hypothesized that transfer of exosomes among the cells in the HCC microenvironment could either induce or inhibit tumor growth and metastasis depending on their source. To check this hypothesis, we investigated the effect of exosomes coming from two different stem cell populations, hepatic CSCs and bone marrow (BM) MSCs, on progression of long-term DEN-induced HCC in rats and the involved underlying mechanisms. CSCs-exosomes induced a significant increase in liver relative weight and serum levels of cancer markers (AFP and GGT) and liver enzymes (ALT, AST, and ALP), intensive immunostaining for the HCC marker GST-P, and an increased number and area of tumor nodules as compared to HCC rats injected by PBS. CSCs-exosomes also decreased apoptosis (marked by downregulation of Bax and p53 and upregulation of Bcl2, and increased immunostaining of PCNA), increased angiogenetic activity (revealed by upregulation of VEGF), enhanced metastasis and invasiveness (indicated by upregulation of P13K and ERK proteins and their downstream target MMP9 and downregulation of TIMP1), and induced epithelial mesenchymal transition (marked by increased serum and hepatic level of TGFß1 mRNA and protein). Notably, CSCs-exosomes also elevated HCC exosomal microRNA (miR) 21, exosomal long noncoding (lnc) RNA Tuc339, lncHEIH, and the HCC lncHOTAIR and decreased liver miR122 and HCC miRs (miR148a, miR16, and miR125b). All these cellular, functional, and molecular changes were reversed following injection of BM-MSCs-exosomes. However, both CSCs- and MSCs-exosomes failed to change the elevated oxidative stress or the inhibited antioxidant activities induced by HCC. Collectively, our results revealed a tumor stimulatory effect (induction of tumor growth, progression, and metastasis) for exosomes derived from CSCs and an inhibitory effect for exosomes derived from MSCs. These results provide valuable insight on the effect of CSCs- and MSCs-exosomes on HCC growth and progression in vivo, which may be helpful to understand the mechanism of HCC development.

15.
Protein J ; 37(6): 622, 2018 12.
Article in English | MEDLINE | ID: mdl-30120635

ABSTRACT

The original version of this article contained mistakes in author names and affiliations. The last names of the authors Salah Korim, Amro Samra, and Hussein A. Amhedar were misspelled. The corrected spelling is Saleh A. Alkarim, Amr A. El-Hanafy, and Hussein A. Almehdar. The correct list of author names and affiliations are published with this erratum.

16.
Protein J ; 37(4): 333-352, 2018 08.
Article in English | MEDLINE | ID: mdl-30006756

ABSTRACT

To gain knowledge on the molecular basis of diversity of several clans of Saudi camel (Camelus dromedarius) characterization of these animals was conducted at both genetic and protein levels. To this end, blood and milk samples were collected from several camel breeds at different Saudi Arabia locations (northern Jeddah, Riyadh, and Alwagh governorates). Genomic DNA was extracted from blood of four Saudi camel breeds (Majahem, Safra, Wadha, and Hamara), and DNA fragments of the casein and α-lactalbumin genes were amplified. The retrieved DNA sequences were analyzed for genetic variability. The inter-simple sequence repeat technique was used for confirming the relationships among the analyzed camel breeds, and the PCR-RFLP with two restriction enzymes was utilized for exploring their molecular variations. The number of haplotypes, gene diversity, nucleotide diversity, average number of nucleotide differences, and sequence conservation were calculated for all the analyzed DNA sequences. These analyses revealed the presence of several single nucleotide polymorphisms in the analyzed DNA sequences. A group of neighbor joining trees was built for inferring the evolutionary variations among the studied animals. Protein profiling of milk from different camel clans was also conducted, and differences between and within the Saudi camel clans were easily found based on the isoelectric focusing (IEF) profiles using ampholytes with different IEF range. This study revealed that analyzed camel breeds show low levels of genetic differences. This may be a reflection of the evolutionary history of C. dromedarius that was domesticated based on a highly homogeneous ancestor ecotype.


Subject(s)
Breeding , Camelus/classification , Milk Proteins/genetics , Milk Proteins/metabolism , Milk/chemistry , Polymorphism, Genetic , Animals , Phylogeny , Proteomics , Saudi Arabia , Sequence Analysis, DNA
17.
J Ethnopharmacol ; 219: 15-22, 2018 Jun 12.
Article in English | MEDLINE | ID: mdl-29530611

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal herb, Anethum graveolens L. (dill) is one of the potent culinary herbs used as an alternative form of medicine worldwide. The unguent topical Oil from the aerial parts of A. graveolens was found to be effective in the management of uterus cancer in ethnomedicine has been reported. BACKGROUND: The incidence and mortality rates of Hepatocellular carcinoma (HCC) are steadily rising worldwide, especially, in underdeveloped and developing countries. Moreover, HCC develops rapidly in patients with chronic cirrhosis or hepatitis, where the solid tumours/malignancies coexist with the inflammation. Recent studies have shown that the medicinal herb, Anethum graveolens, holds anticancer potential, which could be a promising approach for the treatment of various tumours. AIM: In the current study, we have analysed the antiproliferative effect of ethyl acetate fraction of Dill Seeds (EAFD) on HepG2 cell line. METHODS: Cell viability and proliferation were observed by MTT assay; Morphological changes were studied using fluorescent stains like Hoechst 33342, acridine orange/ethidium bromide and JC-1 dye. Further, the pro-apoptotic activity was demonstrated through Annexin-V-FITC/ PI assay and cell cycle analysis. Different concentrations (0.1, 0.2, 0.4, 0.6, 0.8 mg/ml) of EAFD were studied. RESULTS: EAFD markedly suppressed the proliferation of HepG2 cells in a dose and time-dependent manner. The phase contrast and fluorescence microscopy revealed the morphological alterations like disruption, shrinkage, detachment and blebbing of cell membrane accompanied by nuclear condensation after exposure to EAFD. Radical scavenging activity was evidenced by measurement of ROS levels post-treatment. Modulation of mitochondrial membrane potential was exhibited leading to the activation of caspases 3/7 and 9 which is a committed step towards apoptosis. Annexin V-FITC/ PI assay and cell cycle, later confirmed the apoptosis and cell cycle arrest in 'G2/M' phase through flow cytometric analysis. CONCLUSION: In conclusion, a significant apoptogenic effect was exhibited by EAFD against HepG2 cells in inducing apoptosis and cell cycle arrest. Our findings indicate that the medicinal herb- Anethum graveolens, holds potential in treating hepatocellular carcinoma effectively.


Subject(s)
Anethum graveolens , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Plant Oils/pharmacology , Plants, Medicinal , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/physiology , Cell Cycle Checkpoints/physiology , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Plant Oils/isolation & purification , Seeds
18.
J Ethnopharmacol ; 218: 16-26, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29474902

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Foeniculum vulgare Mill. (Fennel) is one of the most common herbs used in alternative medicines for its varied range of bioactivity. In Ecuador (South America), use of fennel in traditional cancer treatment is on record. AIM OF THE STUDY: The objective of the present study was to demonstrate the anti-proliferative and apoptotic effect of chloroform fraction of fennel (CFF) in MCF-7 cells. MATERIALS AND METHODS: Anti-proliferative assay (MTT assay) and colony formation assay were performed to study the growth inhibitory effect of CFF. Various morphological changes of apoptosis were observed using Giemsa, Hoechst and Acridine orange/ ethidium bromide stains in MCF-7 cells. The extent of apoptosis and cell cycle arrest was measured by flow cytometer. Levels of ROS and mitochondrial membrane potential was measured by DCFH-DA and JC-1 respectively. Caspases activity was measured by luminescence and DNA fragmentation by comet assay. RESULTS: CFF appeared as a good inhibitor of growth against MCF-7 and MDA-MB-237 in time- and concentration-dependent manners. All the morphological changes of apoptosis were evident in treatment groups. Annexin V/PI-assay of apoptosis gave around 49% of apoptotic cells upon treatment of 0.5 mg/ml of CFF and PI-stained cells showed the G1 phase cell cycle arrest. Elevated levels of ROS, disrupted mitochondrial membrane, increased levels of caspase-9 & caspase-3 and DNA fragmentation were noted in treated MCF-7 cells. CONCLUSION: Our findings revealed the proliferation inhibition, cell cycle arrest and apoptosis induction effect of CFF, which may help in exploring the novel anti-cancer drug for therapeutic implications.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Foeniculum , Plant Extracts/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Chloroform/chemistry , Comet Assay , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/physiology , Reactive Oxygen Species/metabolism , Seeds , Solvents/chemistry
19.
Oncotarget ; 7(46): 76337-76353, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27486983

ABSTRACT

Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.


Subject(s)
Antineoplastic Agents/therapeutic use , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/pharmacology , Cell Cycle , Epithelial-Mesenchymal Transition/genetics , Extracellular Matrix/metabolism , Humans , Neoplasm Metastasis , Neoplasms/pathology , Resting Phase, Cell Cycle/genetics , Tumor Microenvironment
20.
Dev Comp Immunol ; 65: 8-24, 2016 12.
Article in English | MEDLINE | ID: mdl-27328070

ABSTRACT

This study was performed to identify the expression patterns of the cathelicidin genes in a local chicken breed and to evaluate the antimicrobial activities of the cathelicidin peptides against pathogenic bacteria. This analysis revealed that the coding regions of CATH-1, -2, and -3 genes contain 447 bp, 465 bp, and 456 bp, respectively, and encode proteins of 148, 154, 151 amino acids, respectively. The complete amino acid sequences of the cathelicidin peptides are similar to those found in Meleagris gallopavo, Phasianus colchicus, and Coturnix coturnix, and show high sequence identity to their Columba livia and Anas platyrhynchos counterparts. In contrast, these avian peptides shared a very low sequence identity with the mammalian cathelicidins. The analysis further revealed that the cathelicidin genes are expressed in various organ and tissues. We also show that the CATH peptides 1, 2, 3 and their amide-modified structures possess potent antimicrobial activities against both Gram-positive and Gram-negative pathogens, with these bacteria being affected to different extents. The antimicrobial activities of the peptides are slightly lower than those of their amide analogs. Computational analysis revealed that pre-pro-cathelicidins are hybrid proteins that contain ordered domains and functional intrinsically disordered regions. Furthermore, high structural and sequence variability of mature cathelicidins is a strong indication of their rather disordered nature. It is likely that intrinsic disorder is needed for the multifarious functionality of these antimicrobial peptides. Our analyses indicated that cathelicidin peptides require further study to better understand their full potentials in the treatment of diseases in both humans and animals. The data obtained for synthetic avian peptides will help elucidating of their potential applications in the pharmaceutical industry.


Subject(s)
Anti-Infective Agents/metabolism , Cathelicidins/metabolism , Chickens/immunology , Disinfectants/metabolism , Amides/chemistry , Animals , Anti-Infective Agents/chemistry , Biodiversity , Cathelicidins/chemistry , Cathelicidins/genetics , Computational Biology , Disinfectants/chemistry , Evolution, Molecular , Humans , Mammals , Phylogeny , Sequence Alignment , Structural Homology, Protein , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...