Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pak J Med Sci ; 39(6): 1631-1636, 2023.
Article in English | MEDLINE | ID: mdl-37936770

ABSTRACT

Objective: This laboratory study determined the surface, mechanical and chemical properties of polymethyl methacrylate (PMMA) denture resin reinforced with micron-sized Gum Arabic (GA) powder in different weight ratios. Methods: This laboratory study was conducted at the Dental Health Department of the College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia from November 2022 to February 2023. Three experimental denture resins were prepared by incorporating GA powder in heat-polymerized PMMA powder using different wt.% (5, 10, and 20 wt.%). While pristine PMMA served as the control group. A total of ten bar-shaped specimens with dimensions of 65 mm × 10 mm × 3.5 mm were prepared for each study group. The surface properties (micro CT and SEM evaluation), mechanical properties (Nanohardness, elastic modulus and flexural strength) and chemical properties (FTIR) were conducted. The data were statistically analyzed using the one-way analysis of variance and Tukey's post hoc tests (p<0.05). Results: The surface and bulk properties of experimental GA-reinforced PMMA resin materials deteriorated while the mechanical properties were also negatively altered using GA-based PMMA denture resin. A linear correlation was observed between weak mechanical properties and increasing wt.% of GA in denture resin. Conclusions: The incorporation of GA powder in denture resin might not be a viable option. The surface and mechanical properties of experimental PMMA composites were adversely affected compared to the control group.

2.
Pak J Med Sci ; 39(1): 223-226, 2023.
Article in English | MEDLINE | ID: mdl-36694769

ABSTRACT

Objective: This study aimed to improve the mechanical properties of denture base material using various concentrations of natural biopolymer, i.e., Gum Arabic (GA). Methods: This experimental study was conducted at the Dental Health Department of the College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia from May 2022 to July 2022. After obtaining exemption from the institutional review board, the powdered GA was added in ratios of weight 5, 10, and 20% to PMMA heat-cured acrylic powder to produce bar-shaped samples (65 × 10 × 30 mm3 in dimensions). While the control group was prepared as such. Micro hardness (n=10/group) and fracture toughness (n=10/group) were evaluated. One-way analysis of variance method was used to statistically analyze the results (p<0.05) using SPSS version 23. Results: Significant differences were observed for micro hardness (p<0.001) and fracture toughness (p=0.007) between the means of the different study groups. The control group exhibited the highest micro hardness (22.5±0.6 VHN) and fracture toughness (1.25±0.11 MPa.m1/2) value among the study groups. While 20 wt. % GA and 10 wt. % GA groups showed the lowest micro hardness and fracture toughness values, respectively. Conclusions: GA powder might not be an appropriate reinforcing material for denture base or the higher filler loading of GA in denture base acrylic might be detrimental to the mechanical properties.

SELECTION OF CITATIONS
SEARCH DETAIL