Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(49): e202208611, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36111586

ABSTRACT

Chemical bond activations mediated by H-bond interactions involving highly electronegative elements such as nitrogen and oxygen are powerful tactics in modern catalysis research. On the contrary, kindred catalytic regimes in which heavier, less electronegative elements such as selenium engage in H-bond interactions to co-activate C-Se σ-bonds under oxidative conditions are elusive. Traditional strategies to enhance the nucleofugality of selenium residues predicate on the oxidative addition of electrophiles onto SeII -centers, which entails the elimination of the resulting SeIV moieties. Catalytic procedures in which SeIV nucleofuges are substituted rather than eliminated are very rare and, so far, not applicable to carbon-carbon bond formations. In this study, we introduce an unprecedented combination of O-H⋅⋅⋅Se H-bond interactions and single electron oxidation to catalytically generate SeIII nucleofuges that allow for the formation of new C-C σ-bonds by means of a type I semipinacol process in high yields and excellent selectivity.

2.
Chemistry ; 27(51): 13052-13058, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34196061

ABSTRACT

We introduce a simple way to liquify rare earth metals (REM) by incorporating the corresponding cations, in particular Eu3+ , La3+ , and Y3+ , into polyvalent ionic liquids (ILs). In contrast to conventional methods, this is achieved not by transforming them into anionic complexes, but by keeping them as bare cations and combining them with convenient, cheap and commercially available anions (A) in the form [REM3+ ][A- ]3 . To do so, we follow the COncept of Melting Point Lowering due to EThoxylation (COMPLET) with alkyl polyethylene oxide carboxylates as anions. We provide basic properties, such as glass transition temperatures, viscosities, electrical conductivities, as well as water-octanol partition constants P and show that these ILs have remarkably different properties, despite the similarity of their cations. In addition, we show that the ionic liquids possess interesting luminescent properties as non-conventional fluorophores.

3.
Chemistry ; 26(35): 7946-7954, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32100893

ABSTRACT

The dye rhodamine 6G can act as a photocatalyst through photoinduced electron transfer. After electronic excitation with green light, rhodamine 6G takes an electron from an electron donor, such as N,N-diisopropylethylamine, and forms the rhodamine 6G radical. This radical has a reduction potential of around -0.90 V and can split phenyl iodide into iodine anions and phenyl radicals. Recently, it has been reported that photoexcitation of the radical at 420 nm splits aryl bromides into bromide anions and aryl radicals. This requires an increase in reduction potential, hence the electronically excited rhodamine 6G radical was proposed as the reducing agent. Here, we present a study of the mechanism of the formation and photoreactions of the rhodamine 6G radical by transient absorption spectroscopy in the time range from femtoseconds to minutes in combination with quantum chemical calculations. We conclude that one photon of 540 nm light produces two rhodamine 6G radicals. The lifetime of the photoexcited radicals of around 350 fs is too short to allow diffusion-controlled interaction with a substrate. A fraction of the excited radicals ionize spontaneously, presumably producing solvated electrons. This decay produces hot rhodamine 6G and hot rhodamine 6G radicals, which cool with a time constant of around 10 ps. In the absence of a substrate, the ejected electrons recombine with rhodamine 6G and recover the radical on a timescale of nanoseconds. Photocatalytic reactions occur only upon excitation of the rhodamine 6G radical, and due to its short excited-state lifetime, the electron transfer to the substrate probably takes place through the generation of solvated electrons as an additional step in the proposed photochemical mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...