Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38891342

ABSTRACT

The increase in industrialization has led to an exponential increase in heavy metal (HM) soil contamination, which poses a serious threat to public health and ecosystem stability. This review emphasizes the urgent need to develop innovative technologies for the environmental remediation of intensive anthropogenic pollution. Phytoremediation is a sustainable and cost-effective approach for the detoxification of contaminated soils using various plant species. This review discusses in detail the basic principles of phytoremediation and emphasizes its ecological advantages over other methods for cleaning contaminated areas and its technical viability. Much attention has been given to the selection of hyperaccumulator plants for phytoremediation that can grow on heavy metal-contaminated soils, and the biochemical mechanisms that allow these plants to isolate, detoxify, and accumulate heavy metals are discussed in detail. The novelty of our study lies in reviewing the mechanisms of plant-microorganism interactions that greatly enhance the efficiency of phytoremediation as well as in discussing genetic modifications that could revolutionize the cleanup of contaminated soils. Moreover, this manuscript discusses potential applications of phytoremediation beyond soil detoxification, including its role in bioenergy production and biodiversity restoration in degraded habitats. This review concludes by listing the serious problems that result from anthropogenic environmental pollution that future generations still need to overcome and suggests promising research directions in which the integration of nano- and biotechnology will play an important role in enhancing the effectiveness of phytoremediation. These contributions are critical for environmental scientists, policy makers, and practitioners seeking to utilize phytoremediation to maintain the ecological stability of the environment and its restoration.

2.
Dalton Trans ; 53(20): 8680-8691, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38700274

ABSTRACT

Polyaniline (PANI) stands out as a highly promising conducting polymer with potential for advanced utilization in high-performance pseudocapacitors. Therefore, there exists a pressing need to bolster the structural durability of PANI, achievable by developing composite materials that can enhance its viability for supercapacitor applications. In this particular study, a pioneering approach was undertaken to produce a novel NiMn2O4/PANI supercapacitor electrode material. A comprehensive array of analytical techniques was employed to ascertain the structural configuration, morphology, oxidation states of elements, composition, and surface characteristics of the electrode material. The electrochemical evaluation of the NiMn2O4/PANI composite shows a specific capacitance (Cs) of 1530 ± 2 F g-1 at 1 A g-1. Significantly, the composite material displays an outstanding 93.61% retention of its capacity after an extensive 10 000 cycles, signifying remarkable cycling stability, while the 2-electrode configuration reveals a Cs value of 764 F g-1 at 5 mV s-1 and 826 F g-1 at 1 A g-1 with a smaller charge transfer resistance (Rct) value of 0.67 Ω. Chronoamperometric tests showed excellent stability of the fabricated material up to 50 h. This significant advancement bears immense promise for its potential implementation in high-efficiency energy storage systems and heralds a new phase in the development of supercapacitor technology with improved stability and performance metrics.

3.
Heliyon ; 10(10): e30934, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784551

ABSTRACT

DNA methylation is one of induced changes under salinity stress causing reduction in the expression of several crucial genes required for normal plant's operation. Potential use of royal jelly (RJ), folic acid (FA) and 5-azacitidine (5-AZA) on two Egyptian faba bean varieties (Sakha-3 and Giza-716) grown under saline conditions was investigated. Salinity stress affects negatively on seeds germination (G %), mitotic index, membrane stability and induced a significant increase in chromosomal abnormalities (CAs). DNA methyltransferases genes (MT1 and MT2) were highly up-regulated (∼23 and 8 folds for MT1 and MT2 in shoots of Giza-716 stressed plants). On the other hand, down regulation of other studied stress related genes: superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), heat shock protein (HSP-17.9) and proline-rich protein (GPRP) were detected in stressed plants of both studied varieties. Treating plants with RJ and FA increase G%, chlorophyll content, improves membrane properties and reduces CAs compared to non-treated stressed plants. Exogenous application of 5-AZA, RJ and FA on salinity stressed plants was associated with a significant reduction in the transcription of MT1 and MT2 which was associated with significant up regulation in the expression of Cu/Zn-SOD, CAT, GR, GPRP and HSP-17.9 encoding genes. The Lowest expression of MT1 and MT2 were induced with 5-AZA treatment in both studied varieties. Exogenous application of the FA, RJ and 5-AZA modified the methylation state of stressed plants by regulation the expression of DNA methyltransferases, subsequently, modulated the expression of studied genes and could be proposed as a promising treatment to ameliorate hazardous effects of salt stress on different plants.

4.
Photosynth Res ; 159(2-3): 93-95, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38472613

ABSTRACT

Photosynthesis nourishes nearly all life on Earth. Therefore, a deeper understanding of the processes by which sunlight is converted into stored chemical energy presents an important and continuing challenge for fundamental scientific research. This Special Issue is dedicated to academician Vladimir A. Shuvalov (1943-2022). We are delighted to present 15 manuscripts in the Special Issue, including two review articles and 13 research papers. These papers are contributed by 67 authors from 8 countries, including China (9), Germany (8), Hungary (4), Italy (6), Japan (2), Russia (24), Taiwan (9), and USA (5). This Special Issue provides some of the recent updates on the dynamical aspects of the initial steps of photosynthesis, including excitation energy transfer, electron transport, and dissipation of energy across time domains from femtoseconds to seconds. We hope that the readers will benefit from the work presented in this Special Issue in honor of Prof. Shuvalov in many ways. We hope that the Special Issue will provide a valued resource to stimulate research efforts, initiate potential collaboration, and promote new directions in the photosynthesis community.


Subject(s)
Photosynthesis , Sunlight , Electron Transport , Energy Transfer , Russia
5.
Photosynth Res ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502256

ABSTRACT

The 11th International Photosynthesis Conference on Hydrogen Energy Research and Sustainability 2023 was organized in honor of Robert Blankenship, Gyozo Garab, Michael Grätzel, Norman Hüner, and Gunnar Öquist, in Istanbul, Türkiye at Bahçesehir University Future Campus from 03 to 09 July 2023. It was jointly supported by the International Society of Photosynthesis Research (ISPR) and the International Association for Hydrogen Energy (IAHE). In this article we provide brief details of the conference, its events, keynote speakers, and the scientific contribution of scientists honored at this conference. Further, we also describe the participation of young researchers, their talks, and their awards.

6.
J Photochem Photobiol B ; 252: 112870, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368635

ABSTRACT

Raman spectroscopy (RS), a powerful analytical technique, has gained increasing recognition and utility in the fields of biomedical and biological research. Raman spectroscopic analyses find extensive application in the field of medicine and are employed for intricate research endeavors and diagnostic purposes. Consequently, it enjoys broad utilization within the realm of biological research, facilitating the identification of cellular classifications, metabolite profiling within the cellular milieu, and the assessment of pigment constituents within microalgae. This article also explores the multifaceted role of RS in these domains, highlighting its distinct advantages, acknowledging its limitations, and proposing strategies for enhancement.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods
7.
Heliyon ; 9(11): e21446, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37964846

ABSTRACT

Impairing plant growth and reducing crop production, salinity is considered as major problem in modern agriculture. The current study aimed to investigate the role of seeds' heat pretreatment at 45 °C as well as application of two different nanoparticles nanosilica (N1) and nanoselenium (N2) in reducing salinity stress in three genotypes of Egyptian commercial soybeans (Glycine max L.). Two levels of salt stress using diluted sea water (1/12 and 1/6) were tested either alone or in combination with protective treatments. Obtained results revealed that salinity caused a significant reduction in all tested physiological parameters such as germination rate and membrane stability in soybean plants. A significant reduction in mitotic index and arrest in metaphase were recorded under both tested levels of salinity. It was also revealed that chromosomal abnormalities in soybean plants were positively correlated with the applied salinity concentrations. The fragmentation effect of salinity on the nuclear DNA was investigated and confirmed using Comet assay analysis. Seeds heat pre-treatment (45 °C) and both types of nanoparticles' treatments yielded positive effects on both the salt-stressed and unstressed plants. Quantitative real-time reverse transcription PCR (qRT-PCR) analysis for salt stress responsive marker genes revealed that most studied genes (CAT, APX, DHN2, CAB3, GMPIPL6 and GMSALT3) responded favorably to protective treatments. The modulation in gene expression pattern was associated with improving growth vigor and salinity tolerance in soybean plants. Our results suggest that seeds' heat pretreatment and nanoparticle applications support the recovery against oxidative stresses and represent a promising strategy for alleviating salt stress in soybean genotypes.

9.
Cells ; 12(21)2023 11 03.
Article in English | MEDLINE | ID: mdl-37947647

ABSTRACT

The effects of high-intensity light on the pigment content, photosynthetic rate, and fluorescence parameters of photosystem II in high-pigment tomato mutants (hp 3005) and low-pigment mutants (lp 3617) were investigated. This study also evaluated the dry weight percentage of low molecular weight antioxidant capacity, expression patterns of some photoreceptor-regulated genes, and structural aspects of leaf mesophyll cells. The 3005 mutant displayed increased levels of photosynthetic pigments and anthocyanins, whereas the 3617 mutant demonstrated a heightened content of ultraviolet-absorbing pigments. The photosynthetic rate, photosystem II activity, antioxidant capacity, and carotenoid content were most pronounced in the high-pigment mutant after 72 h exposure to intense light. This mutant also exhibited an increase in leaf thickness and water content when exposed to high-intensity light, suggesting superior physiological adaptability and reduced photoinhibition. Our findings indicate that the enhanced adaptability of the high-pigment mutant might be attributed to increased flavonoid and carotenoid contents, leading to augmented expression of key genes associated with pigment synthesis and light regulation.


Subject(s)
Carotenoids , Solanum lycopersicum , Carotenoids/metabolism , Anthocyanins/metabolism , Solanum lycopersicum/genetics , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism , Photosynthesis/genetics , Antioxidants/metabolism
10.
Environ Res ; 239(Pt 2): 117419, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37852466

ABSTRACT

There is currently an escalating global demand for the utilization of plant and natural extracts as pesticides due to their minimal health risks. Cyanobacteria are highly valuable organisms with significant potential in agriculture and are of great interest for the development of agrochemical agents as biopesticides. The flexibility and adaptability of Cyanobacteria to various environmental conditions are facilitated by the presence of specialized enzymes involved in the production of biologically active diverse secondary metabolites, including alkaloids, lipopolysaccharides, non-protein amino acids, non-ribosomal peptides, polyketides, terpenoids, and others. This review focuses on the metabolites synthesized from cyanobacteria that have demonstrated effectiveness as antibacterial, antiviral, antifungal agents, insecticides, herbicides, and more. The potential role of cyanobacteria as an alternative to chemical pesticides for environmental conservation is discussed.


Subject(s)
Cyanobacteria , Insecticides , Pesticides , Biological Control Agents/chemistry , Biological Control Agents/metabolism , Carbon Dioxide , Pesticides/metabolism , Insecticides/chemistry , Cyanobacteria/metabolism , Anti-Bacterial Agents
11.
Plant Physiol Biochem ; 203: 108044, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37776673

ABSTRACT

Marchantia polymorpha is a convenient model for studying light of different spectral compositions on various physiological and biochemical processes because its photoreceptor system is vastly simplified. The influence of red light (RL, 660 nm), far-red light (FRL, 730 nm), blue light (BL, 450 nm), and green light (GL, 525 nm) compared to white light (high-pressure sodium light (HPSL), white LEDs (WL 450 + 580 nm) and white fluorescent light (WFL) on photosynthetic and transpiration rates, photosystem II (PSII) activity, photomorphogenesis, and the expression of light and hormonal signaling genes was studied. The ultrastructure of the chloroplasts in different tissues of the gametophyte M. polymorpha was examined. FRL led to the formation of agranal chloroplasts (in the epidermis and the chlorenchyma) with a high starch content (in the parenchyma), which led to a reduced intensity of photosynthesis. BL increased the transcription of genes for the biosynthesis of secondary metabolites - chalcone synthase (CHS), cellulose synthase (CELL), and L-ascorbate peroxidase (APOX3), which is consistent with the increased activity of low-molecular weight antioxidants. FRL increased the expression of phytochrome apoprotein (PHY) and cytokinin oxidase (CYTox) genes, but the expression of the phytochrome interacting factor (PIF) gene decreased, which was accompanied by a significant change in gametophyte morphology. Analysis of crosstalk gene expression, and changes in morphology and photosynthetic activity was carried out.

12.
Funct Plant Biol ; 50(11): 932-940, 2023 11.
Article in English | MEDLINE | ID: mdl-37573788

ABSTRACT

Soil salinisation is one of the main abiotic stresses decreasing crop productivity. Here, we show that the plant treatment with iron oxide (Fe3 O4 ) nanoparticles (NPs) may be a promising solution for reducing the negative impact of soil salinity on plant performance. For this purpose, effects of the NPs on growth, photosynthesis, pro-/antioxidant, redox balance and the content of mineral elements in 19-day-old wheat (Triticum aestivum ) plants under soil salinity were studied. Seed treatment with NPs (200 and 500mg L-1 ) enhanced growth and photosynthetic rate in leaves. Moderate salinity stress (150mMNaCl) led to a decrease in plant biomass as well as the rate of photosynthesis and PSII activity; leaf photosynthetic characteristics were also suppressed by lower (75mMNaCl) salinity treatment. However, seed pre-treatment with the NPs partially eliminated the negative effect of the salt on growth, PSII activity and photosynthesis. Also, we observed a decrease in the content of malondialdehyde (MDA) and an increase in ascorbate and total peroxidase activity in the plant leaves upon combined treatment with NaCl and the NPs compared with treatment with NaCl alone. The combined treatment with the NPs and salinity also led to a noticeable increase in the content of Fe and Mn in the shoot. It was concluded that Fe3 O4 NPs can enhance plant growth by improving photosynthetic characteristics, antioxidant balance and the availability of iron and manganese ions, under conditions of soil salinisation.


Subject(s)
Antioxidants , Triticum , Antioxidants/metabolism , Triticum/metabolism , Sodium Chloride/pharmacology , Salinity , Photosynthesis , Minerals/pharmacology , Soil , Magnetic Iron Oxide Nanoparticles
13.
Biomolecules ; 13(7)2023 06 29.
Article in English | MEDLINE | ID: mdl-37509094

ABSTRACT

Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level. [CuL2]Br2 reduces the FV of PSII fluorescence. Artificial electron donors do not rescind the effect of [CuL2]Br2. The inhibitory mechanism of [CuL2]Br2 remains unclear. To explore this mechanism, we investigated the effect of [CuL2]Br2 in the presence/absence of the well-studied inhibitor DCMU on PSII-containing membranes by OJIP Chl fluorescence transient measurements. [CuL2]Br2 has two effects on Chl fluorescence transients: (1) a substantial decrease of the Chl fluorescence intensity throughout the entire kinetics, and (2) an auxiliary "diuron-like" effect. The initial decrease dominates and is observed both with and without DCMU. In contrast, the "diuron-like" effect is small and is observed only without DCMU. We propose that [CuL2]Br2 has two binding sites for PSII with different affinities. At the high-affinity site, [CuL2]Br2 produces effects similar to PSII reaction center inhibition, while at the low-affinity site, [CuL2]Br2 produces effects identical to those of DCMU. These results are compared with other PSII-specific classes of herbicides.


Subject(s)
Diuron , Herbicides , Diuron/metabolism , Diuron/pharmacology , Chlorophyll/metabolism , Copper/pharmacology , Spinacia oleracea , Photosystem II Protein Complex/metabolism , Photochemistry , Fluorescence , Herbicides/pharmacology
14.
Plant Signal Behav ; 18(1): 2233179, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37431740

ABSTRACT

Biomineralization in plant roots refers to the process of cell-induced self-assembly to form nanostructures on the root surface. Silicon (Si) is the second most abundant element in soils, and beneficial to plant growth. Meanwhile, silicon is shown to participate in the process of biomineralization, which is useful for improving mechanical strength and alleviating biotic and abiotic stress, for example silicic acid polymerizes to form amorphous silica (SiO2-nH2O) in the process of growing to resist fungi and environmental stress. This process alters physical and chemical properties of cell wall. However, the mechanistic basis of this process remains unclear. Aluminum toxicity is a major constraint affecting plant performance in acid soil. This paper summarizes recent research advances in the field of plant biomineralization and describes the effects of silicon biomineralization on plant aluminum tolerance and its adaptive significance, using aluminum toxicity as a case study.


Subject(s)
Silicon Dioxide , Silicon , Silicon/pharmacology , Aluminum/toxicity , Biomineralization , Cell Cycle , Soil
15.
Plants (Basel) ; 12(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37447113

ABSTRACT

The aim of this study was to investigate the effect of light quality (white fluorescent light, WFL, containing UV components), red light (RL, 660 nm), blue light (BL, 450 nm), and white LED light (WL, 450 + 580 nm) on the components of the cellular antioxidant system in Pinus sylvestris L. in needles, roots, and hypocotyls, focusing on the accumulation of key secondary metabolites and the expression of related genes. The qualitative and quantitative composition of carotenoids; the content of the main photosynthetic pigments, phenolic compounds, flavonoids (catechins, proanthocyanidins, anthocyanins), ascorbate, and glutathione; the activity of the main antioxidant enzymes; the content of hydrogen peroxide; and the intensity of lipid peroxidation (MDA and 4-HNE contents) were determined. RL resulted in an increase in the content of hydrogen peroxide and 4-HNE, as well as the total fraction of flavonoids in the needles. It also enhanced the expression of several PR (pathogen-related) genes compared to BL and WL. WFL increased the content of phenols, including flavonoids, and enhanced the overall activity of low-molecular antioxidants in needles and hypocotyls. BL increased the content of ascorbate and glutathione, including reduced glutathione, in the needles and simultaneously decreased the activity of peroxidases. Thus, by modifying the light quality, it is possible to regulate the accumulation of secondary metabolites in pine roots and needles, thereby influencing their resistance to various biotic and abiotic stressors.

16.
Environ Res ; 233: 116418, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37321341

ABSTRACT

The use of unregulated pesticides and chemical fertilizers can have detrimental effects on biodiversity and human health. This problem is exacerbated by the growing demand for agricultural products. To address these global challenges and promote food and biological security, a new form of agriculture is needed that aligns with the principles of sustainable development and the circular economy. This entails developing the biotechnology market and maximizing the use of renewable and eco-friendly resources, including organic fertilizers and biofertilizers. Phototrophic microorganisms capable of oxygenic photosynthesis and assimilation of molecular nitrogen play a crucial role in soil microbiota, interacting with diverse microflora. This suggests the potential for creating artificial consortia based on them. Microbial consortia offer advantages over individual organisms as they can perform complex functions and adapt to variable conditions, making them a frontier in synthetic biology. Multifunctional consortia overcome the limitations of monocultures and produce biological products with a wide range of enzymatic activities. Biofertilizers based on such consortia present a viable alternative to chemical fertilizers, addressing the issues associated with their usage. The described capabilities of phototrophic and heterotrophic microbial consortia enable effective and environmentally safe restoration and preservation of soil properties, fertility of disturbed lands, and promotion of plant growth. Hence, the utilization of algo-cyano-bacterial consortia biomass can serve as a sustainable and practical substitute for chemical fertilizers, pesticides, and growth promoters. Furthermore, employing these bio-based organisms is a significant stride towards enhancing agricultural productivity, which is an essential requirement to meet the escalating food demands of the growing global population. Utilizing domestic and livestock wastewater, as well as CO2 flue gases, for cultivating this consortium not only helps reduce agricultural waste but also enables the creation of a novel bioproduct within a closed production cycle.


Subject(s)
Fertilizers , Pesticides , Humans , Fertilizers/analysis , Agriculture , Soil , Plant Development
17.
Plants (Basel) ; 12(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36840216

ABSTRACT

The effects of heating (40 °C, 1 and 2 h) in dark and light conditions on the photosynthetic activity (photosynthesis rate and photosystem II activity), content of photosynthetic pigments, activity of antioxidant enzymes, content of thiobarbituric acid reactive substances (TBARs), and expression of a number of key genes of antioxidant enzymes and photosynthetic proteins were studied. It was shown that, in darkness, heating reduced CO2 gas exchange, photosystem II activity, and the content of photosynthetic pigments to a greater extent in the phyB mutant than in the wild type (WT). The content of TBARs increased only in the phyB mutant, which is apparently associated with a sharp increase in the total peroxidase activity in WT and its decrease in the phyB mutant, which is consistent with a noticeable decrease in photosynthetic activity and the content of photosynthetic pigments in the mutant. No differences were indicated in all heated samples under light. It is assumed that the resistance of the photosynthetic apparatus to a short-term elevated temperature depends on the content of PHYB active form and is probably determined by the effect of phytochrome on the content of low-molecular weight antioxidants and the activity of antioxidant enzymes.

18.
Photosynth Res ; 157(1): 43-51, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36847891

ABSTRACT

On behalf of the entire photosynthesis community, it is an honor, for us, to write about two very eminent scientists who were recently recognised with a Lifetime Achievement Award from the International Society of Photosynthesis Research (ISPR) on August 5, 2022; this prestigious Award was given during the closing ceremony of the 18th International Congress on Photosynthesis Research in Dunedin, New Zealand. The awardees were: Professor Eva-Mari Aro (Finland) and Professor Emeritus Govindjee Govindjee (USA). One of the authors, Anjana Jajoo, is especially delighted to be a part of this tribute to professors Aro and Govindjee as she was lucky enough to have worked with both of them.


Subject(s)
Awards and Prizes , Photosynthesis , Achievement
19.
Funct Plant Biol ; 50(2): i-iv, 2023 02.
Article in English | MEDLINE | ID: mdl-36734992

ABSTRACT

Polyamines (PAs) and nitric oxide (NO) are crucial signalling molecules that exhibit a promising role in improving stress tolerance in plants, maintaining their growth and development. They act as protecting agents for plants through activation of stress adaptation strategies such as membrane stabilisation, acid neutralisation and suppression of ROS generation. NO interacts with PAs during several developmental processes and stress responses. External supplementation of PAs to plants is also reported to cause an increase in NO content. However, it is unclear whether PAs promote synthesis of NO by either as substrates, cofactors, or signals. Impact of NO on synthesis of PAs has been also reported in some studies, yet the exact governing mechanisms of the interrelation between NO and PAs is currently obscure. Understanding the crosstalk between PAs and NO during growth and stress condition in plants can aid in providing better tolerance to plants against stressful environment.


Subject(s)
Nitric Oxide , Polyamines , Plants , Stress, Physiological , Plant Development
20.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768383

ABSTRACT

The photoreceptors of red light (phytochromes) and blue light (cryptochromes) impact plant growth and metabolism. However, their action has been barely studied, especially in coniferous plants. Therefore, the influence of blue (maximum 450 nm), red (maximum 660 nm), white light (maxima 450 nm + 575 nm), far-red light (maximum 730 nm), white fluorescent light and dark on seed germination, growth, chlorophyll and carotenoid contents, as well as the transcript levels of genes involved in reception, photosynthesis, light and hormonal signaling of Scots pine plantlets, was investigated. The highest values of dry weight, root length and photosynthetic pigment contents were characteristic of 9-day-old plantlets grown under red light, whereas in the dark plantlet length, seed vigor, seed germination, dry weight and pigment contents were decreased. Under blue and white lights, the main studied morphological parameters were decreased or close to red light. The cotyledons were undeveloped under dark conditions, likely due to the reduced content of photosynthetic pigments, which agrees with the low transcript levels of genes encoding protochlorophyllide oxidoreductase (PORA) and phytoene synthase (PSY). The transcript levels of a number of genes involved in phytohormone biosynthesis and signaling, such as GA3ox, RRa, KAO and JazA, were enhanced under red light, unlike under dark conditions. We suggest that the observed phenomena of red light are the most important for the germination of the plantlets and may be based on earlier and enhanced expression of auxin, cytokinin, gibberellin and jasmonate signaling genes activated by corresponding photoreceptors. The obtained results may help to improve reforestation technology; however, this problem needs further study.


Subject(s)
Chlorophyll , Photosynthesis , Photosynthesis/genetics , Chlorophyll/metabolism , Plants/metabolism , Seeds/metabolism , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL
...