Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722096

ABSTRACT

During embryonic development, lymphatic endothelial cell (LEC) precursors are distinguished from blood endothelial cells by the expression of Prospero-related homeobox 1 (Prox1), which is essential for lymphatic vasculature formation in mouse and zebrafish. Prox1 expression initiation precedes LEC sprouting and migration, serving as the marker of specified LECs. Despite its crucial role in lymphatic development, Prox1 upstream regulation in LECs remains to be uncovered. SOX18 and COUP-TFII are thought to regulate Prox1 in mice by binding its promoter region. However, the specific regulation of Prox1 expression in LECs remains to be studied in detail. Here, we used evolutionary conservation and chromatin accessibility to identify enhancers located in the proximity of zebrafish prox1a active in developing LECs. We confirmed the functional role of the identified sequences through CRISPR/Cas9 mutagenesis of a lymphatic valve enhancer. The deletion of this region results in impaired valve morphology and function. Overall, our results reveal an intricate control of prox1a expression through a collection of enhancers. Ray-finned fish-specific distal enhancers drive pan-lymphatic expression, whereas vertebrate-conserved proximal enhancers refine expression in functionally distinct subsets of lymphatic endothelium.


Subject(s)
Endothelial Cells , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Homeodomain Proteins , Lymphatic Vessels , Tumor Suppressor Proteins , Zebrafish Proteins , Zebrafish , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zebrafish/genetics , Zebrafish/embryology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Enhancer Elements, Genetic/genetics , Lymphatic Vessels/metabolism , Lymphatic Vessels/embryology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Endothelial Cells/metabolism , Lymphangiogenesis/genetics , CRISPR-Cas Systems/genetics , Promoter Regions, Genetic/genetics , Mice
2.
Elife ; 112022 Nov 15.
Article in English | MEDLINE | ID: mdl-36377467

ABSTRACT

The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a transient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnathostomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate jaws.


Subject(s)
Zebrafish , Animals , Biological Evolution , Genome , Jaw , Lampreys , Mammals/genetics , Regulatory Sequences, Nucleic Acid , Zebrafish/genetics , Gene Expression Regulation, Developmental/genetics , Gene Deletion , Vertebrates/genetics , Vertebrates/growth & development
3.
Cell Rep ; 39(12): 110982, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35732122

ABSTRACT

Lymphangiogenesis, formation of lymphatic vessels from pre-existing vessels, is a dynamic process that requires cell migration. Regardless of location, migrating lymphatic endothelial cell (LEC) progenitors probe their surroundings to form the lymphatic network. Lymphatic-development regulation requires the transcription factor MAFB in different species. Zebrafish Mafba, expressed in LEC progenitors, is essential for their migration in the trunk. However, the transcriptional mechanism that orchestrates LEC migration in different lymphatic endothelial beds remains elusive. Here, we uncover topographically different requirements of the two paralogs, Mafba and Mafbb, for LEC migration. Both mafba and mafbb are necessary for facial lymphatic development, but mafbb is dispensable for trunk lymphatic development. On the molecular level, we demonstrate a regulatory network where Vegfc-Vegfd-SoxF-Mafba-Mafbb is essential in facial lymphangiogenesis. We identify that mafba and mafbb tune the directionality of LEC migration and vessel morphogenesis that is ultimately necessary for lymphatic function.


Subject(s)
Lymphatic Vessels , Zebrafish , Animals , Cell Movement , Endothelial Cells , Lymphangiogenesis , Morphogenesis , Signal Transduction
4.
PLoS Genet ; 18(2): e1010067, 2022 02.
Article in English | MEDLINE | ID: mdl-35192612

ABSTRACT

Chondroitin/dermatan sulfate (CS/DS) proteoglycans are indispensable for animal development and homeostasis but the large number of enzymes involved in their biosynthesis have made CS/DS function a challenging problem to study genetically. In our study, we generated loss-of-function alleles in zebrafish genes encoding CS/DS biosynthetic enzymes and characterized the effect on development in single and double mutants. Homozygous mutants in chsy1, csgalnact1a, csgalnat2, chpfa, ust and chst7, respectively, develop to adults. However, csgalnact1a-/- fish develop distinct craniofacial defects while the chsy1-/- skeletal phenotype is milder and the remaining mutants display no gross morphological abnormalities. These results suggest a high redundancy for the CS/DS biosynthetic enzymes and to further reduce CS/DS biosynthesis we combined mutant alleles. The craniofacial phenotype is further enhanced in csgalnact1a-/-;chsy1-/- adults and csgalnact1a-/-;csgalnact2-/- larvae. While csgalnact1a-/-;csgalnact2-/- was the most affected allele combination in our study, CS/DS is still not completely abolished. Transcriptome analysis of chsy1-/-, csgalnact1a-/- and csgalnact1a-/-;csgalnact2-/- larvae revealed that the expression had changed in a similar way in the three mutant lines but no differential expression was found in any of fifty GAG biosynthesis enzymes identified. Thus, zebrafish larvae do not increase transcription of GAG biosynthesis genes as a consequence of decreased CS/DS biosynthesis. The new zebrafish lines develop phenotypes similar to clinical characteristics of several human congenital disorders making the mutants potentially useful to study disease mechanisms and treatment.


Subject(s)
Dermatan Sulfate , Zebrafish , Animals , Chondroitin Sulfates/metabolism , Dermatan Sulfate/genetics , Dermatan Sulfate/metabolism , Glycosyltransferases/genetics , Phenotype , Zebrafish/genetics , Zebrafish/metabolism
5.
Dev Dyn ; 251(9): 1535-1549, 2022 09.
Article in English | MEDLINE | ID: mdl-34242444

ABSTRACT

BACKGROUND: The development of the vertebrate limb skeleton requires a complex interaction of multiple factors to facilitate the correct shaping and positioning of bones and joints. Growth and differentiation factor 5 (Gdf5) is involved in patterning appendicular skeletal elements including joints. Expression of gdf5 in zebrafish has been detected in fin mesenchyme condensations and segmentation zones as well as the jaw joint, however, little is known about the functional role of Gdf5 outside of Amniota. RESULTS: We generated CRISPR/Cas9 knockout of gdf5 in zebrafish and analyzed the resulting phenotype at different developmental stages. Homozygous gdf5 mutant zebrafish displayed changes in segmentation of the endoskeletal disc and, as a consequence, loss of posterior radials in the pectoral fins. Mutant fish also displayed disorganization and reduced length of endoskeletal elements in the median fins, while joints and mineralization seemed unaffected. CONCLUSIONS: Our study demonstrates the importance of Gdf5 in the development of the zebrafish pectoral and median fin endoskeleton and reveals that the severity of the effect increases from anterior to posterior elements. Our findings are consistent with phenotypes observed in the human and mouse appendicular skeleton in response to Gdf5 knockout, suggesting a broadly conserved role for Gdf5 in Osteichthyes.


Subject(s)
Gene Expression Regulation, Developmental , Growth Differentiation Factor 5 , Zebrafish , Animal Fins/metabolism , Animals , Bone and Bones/metabolism , Growth Differentiation Factor 5/genetics , Growth Differentiation Factor 5/metabolism , Mice , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
6.
PLoS One ; 16(8): e0255953, 2021.
Article in English | MEDLINE | ID: mdl-34411150

ABSTRACT

The transcription factor Nkx3.2 (Bapx1) is an important chondrocyte maturation inhibitor. Previous Nkx3.2 knockdown and overexpression studies in non-mammalian gnathostomes have focused on its role in primary jaw joint development, while the function of this gene in broader skeletal development is not fully described. We generated a mutant allele of nkx3.2 in zebrafish with CRISPR/Cas9 and applied a range of techniques to characterize skeletal phenotypes at developmental stages from larva to adult, revealing loss of the jaw joint, fusions in bones of the occiput, morphological changes in the Weberian apparatus, and the loss or deformation of bony elements derived from basiventral cartilages of the vertebrae. Axial phenotypes are reminiscent of Nkx3.2 knockout in mammals, suggesting that the function of this gene in axial skeletal development is ancestral to osteichthyans. Our results highlight the broad role of nkx3.2 in zebrafish skeletal development and its context-specific functions in different skeletal elements.


Subject(s)
Homeodomain Proteins , Zebrafish , Animals , Bone and Bones , Gene Expression Regulation, Developmental , Transcription Factors
7.
Biomed Opt Express ; 11(8): 4290-4305, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32923043

ABSTRACT

Optical projection tomography (OPT) is a 3D imaging alternative to conventional microscopy which allows imaging of millimeter-sized object with isotropic micrometer resolution. The zebrafish is an established model organism and an important tool used in genetic and chemical screening. The size and optical transparency of the embryo and larva makes them well suited for imaging using OPT. Here, we present an open-source implementation of an OPT platform, built around a customized sample stage, 3D-printed parts and open source algorithms optimized for the system. We developed a versatile automated workflow including a two-step image processing approach for correcting the center of rotation and generating accurate 3D reconstructions. Our results demonstrate high-quality 3D reconstruction using synthetic data as well as real data of live and fixed zebrafish. The presented 3D-printable OPT platform represents a fully open design, low-cost and rapid loading and unloading of samples. Our system offers the opportunity for researchers with different backgrounds to setup and run OPT for large scale experiments, particularly in studies using zebrafish larvae as their key model organism.

8.
Sci Rep ; 10(1): 11831, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678143

ABSTRACT

A meta-analysis of genome-wide association studies (GWAS) identified eight loci that are associated with heart rate variability (HRV), but candidate genes in these loci remain uncharacterized. We developed an image- and CRISPR/Cas9-based pipeline to systematically characterize candidate genes for HRV in live zebrafish embryos. Nine zebrafish orthologues of six human candidate genes were targeted simultaneously in eggs from fish that transgenically express GFP on smooth muscle cells (Tg[acta2:GFP]), to visualize the beating heart. An automated analysis of repeated 30 s recordings of beating atria in 381 live, intact zebrafish embryos at 2 and 5 days post-fertilization highlighted genes that influence HRV (hcn4 and si:dkey-65j6.2 [KIAA1755]); heart rate (rgs6 and hcn4); and the risk of sinoatrial pauses and arrests (hcn4). Exposure to 10 or 25 µM ivabradine-an open channel blocker of HCNs-for 24 h resulted in a dose-dependent higher HRV and lower heart rate at 5 days post-fertilization. Hence, our screen confirmed the role of established genes for heart rate and rhythm (RGS6 and HCN4); showed that ivabradine reduces heart rate and increases HRV in zebrafish embryos, as it does in humans; and highlighted a novel gene that plays a role in HRV (KIAA1755).


Subject(s)
Bradycardia/genetics , Heart Rate/physiology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Myocardial Contraction/physiology , RGS Proteins/genetics , Animals , Animals, Genetically Modified , Bradycardia/diagnostic imaging , Bradycardia/metabolism , Bradycardia/physiopathology , CRISPR-Cas Systems , Cardiovascular Agents/pharmacology , Embryo, Nonmammalian , Genes, Reporter , Genome-Wide Association Study , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart Rate/drug effects , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/antagonists & inhibitors , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ivabradine/pharmacology , Meta-Analysis as Topic , Myocardial Contraction/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Optical Imaging/methods , Pleckstrin Homology Domains/genetics , RGS Proteins/metabolism , Zebrafish
9.
eNeuro ; 7(3)2020.
Article in English | MEDLINE | ID: mdl-32357958

ABSTRACT

Vertebrate locomotion is orchestrated by spinal interneurons making up a central pattern generator. Proper coordination of activity, both within and between segments, is required to generate the desired locomotor output. This coordination is altered during acceleration to ensure the correct recruitment of muscles for the chosen speed. The transcription factor Dmrt3 has been proposed to shape the patterned output at different gaits in horses and mice. Here, we characterized dmrt3a mutant zebrafish, which showed a strong, transient, locomotor phenotype in developing larvae. During beat-and-glide swimming, mutant larvae showed fewer and shorter movements with decreased velocity and acceleration. Developmental compensation likely occurs as the analyzed behaviors did not differ from wild-type at older larval stages. However, analysis of maximum swim speed in juveniles suggests that some defects persist within the mature locomotor network of dmrt3a mutants. Our results reveal the pivotal role Dmrt3 neurons play in shaping the patterned output during acceleration in vertebrates.


Subject(s)
Spinal Cord , Zebrafish , Acceleration , Animals , Locomotion , Phenotype , Transcription Factors/genetics , Zebrafish Proteins
10.
Sci Rep ; 9(1): 10730, 2019 07 24.
Article in English | MEDLINE | ID: mdl-31341187

ABSTRACT

The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.


Subject(s)
Histone Acetyltransferases/physiology , Intellectual Disability/genetics , Nervous System/growth & development , TATA-Binding Protein Associated Factors/physiology , Transcription Factor TFIID/physiology , Zebrafish Proteins/physiology , Zebrafish/growth & development , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Gene Expression Profiling , Gene Knockdown Techniques , Histone Acetyltransferases/genetics , Humans , Male , Mental Retardation, X-Linked/genetics , Nervous System/embryology , Pedigree , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
11.
Nat Commun ; 9(1): 219, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335539

ABSTRACT

Neurological drugs are often associated with serious side effects, yet drug screens typically focus only on efficacy. We demonstrate a novel paradigm utilizing high-throughput in vivo electrophysiology and brain activity patterns (BAPs). A platform with high sensitivity records local field potentials (LFPs) simultaneously from many zebrafish larvae over extended periods. We show that BAPs from larvae experiencing epileptic seizures or drug-induced side effects have substantially reduced complexity (entropy), similar to reduced LFP complexity observed in Parkinson's disease. To determine whether drugs that enhance BAP complexity produces positive outcomes, we used light pulses to trigger seizures in a model of Dravet syndrome, an intractable genetic epilepsy. The highest-ranked compounds identified by BAP analysis exhibit far greater anti-seizure efficacy and fewer side effects during subsequent in-depth behavioral assessment. This high correlation with behavioral outcomes illustrates the power of brain activity pattern-based screens and identifies novel therapeutic candidates with minimal side effects.


Subject(s)
Brain/physiopathology , Electrophysiological Phenomena , Psychotropic Drugs/pharmacology , Zebrafish/physiology , Animals , Disease Models, Animal , Electrophysiology/methods , Epilepsies, Myoclonic/diagnosis , Epilepsies, Myoclonic/physiopathology , Humans , Larva/drug effects , Larva/genetics , Larva/physiology , Psychotropic Drugs/toxicity , Zebrafish/genetics
12.
Elife ; 62017 04 13.
Article in English | MEDLINE | ID: mdl-28406399

ABSTRACT

Here, we describe an automated platform suitable for large-scale deep-phenotyping of zebrafish mutant lines, which uses optical projection tomography to rapidly image brain-specific gene expression patterns in 3D at cellular resolution. Registration algorithms and correlation analysis are then used to compare 3D expression patterns, to automatically detect all statistically significant alterations in mutants, and to map them onto a brain atlas. Automated deep-phenotyping of a mutation in the master transcriptional regulator fezf2 not only detects all known phenotypes but also uncovers important novel neural deficits that were overlooked in previous studies. In the telencephalon, we show for the first time that fezf2 mutant zebrafish have significant patterning deficits, particularly in glutamatergic populations. Our findings reveal unexpected parallels between fezf2 function in zebrafish and mice, where mutations cause deficits in glutamatergic neurons of the telencephalon-derived neocortex.


Subject(s)
Brain Mapping/methods , Brain/physiology , Gene Expression Profiling/methods , Phenotype , Tomography/methods , Zebrafish/physiology , Animals , Automation, Laboratory/methods , Brain/diagnostic imaging , Mutation , Zebrafish/genetics
13.
Traffic Inj Prev ; 18(sup1): S31-S36, 2017 05 29.
Article in English | MEDLINE | ID: mdl-28368660

ABSTRACT

OBJECTIVE: The research objective of the present investigation is to demonstrate the present status of passive in-vehicle driver breath alcohol detection and highlight the necessary conditions for large-scale implementation of such a system. Completely passive detection has remained a challenge mainly because of the requirements on signal resolution combined with the constraints of vehicle integration. The work is part of the Driver Alcohol Detection System for Safety (DADSS) program aiming at massive deployment of alcohol sensing systems that could potentially save thousands of American lives annually. METHOD: The work reported here builds on earlier investigations, in which it has been shown that detection of alcohol vapor in the proximity of a human subject may be traced to that subject by means of simultaneous recording of carbon dioxide (CO2) at the same location. Sensors based on infrared spectroscopy were developed to detect and quantify low concentrations of alcohol and CO2. In the present investigation, alcohol and CO2 were recorded at various locations in a vehicle cabin while human subjects were performing normal in-step procedures and driving preparations. A video camera directed to the driver position was recording images of the driver's upper body parts, including the face, and the images were analyzed with respect to features of significance to the breathing behavior and breath detection, such as mouth opening and head direction. RESULTS: Improvement of the sensor system with respect to signal resolution including algorithm and software development, and fusion of the sensor and camera signals was successfully implemented and tested before starting the human study. In addition, experimental tests and simulations were performed with the purpose of connecting human subject data with repeatable experimental conditions. The results include occurrence statistics of detected breaths by signal peaks of CO2 and alcohol. From the statistical data, the accuracy of breath alcohol estimation and timing related to initial driver routines (door opening, taking a seat, door closure, buckling up, etc.) can be estimated. The investigation confirmed the feasibility of passive driver breath alcohol detection using our present system. Trade-offs between timing and sensor signal resolution requirements will become critical. Further improvement of sensor resolution and system ruggedness is required before the results can be industrialized. CONCLUSIONS: It is concluded that a further important step toward completely passive detection of driver breath alcohol has been taken. If required, the sniffer function with alcohol detection capability can be combined with a subsequent highly accurate breath test to confirm the driver's legal status using the same sensor device. The study is relevant to crash avoidance, in particular driver monitoring systems and driver-vehicle interface design.


Subject(s)
Alcoholic Intoxication/diagnosis , Automobile Driving/statistics & numerical data , Breath Tests/instrumentation , Ethanol/isolation & purification , Substance Abuse Detection/methods , Humans
14.
Nat Commun ; 4: 1467, 2013.
Article in English | MEDLINE | ID: mdl-23403568

ABSTRACT

Most gene mutations and biologically active molecules cause complex responses in animals that cannot be predicted by cell culture models. Yet animal studies remain too slow and their analyses are often limited to only a few readouts. Here we demonstrate high-throughput optical projection tomography with micrometre resolution and hyperdimensional screening of entire vertebrates in tens of seconds using a simple fluidic system. Hundreds of independent morphological features and complex phenotypes are automatically captured in three dimensions with unprecedented speed and detail in semitransparent zebrafish larvae. By clustering quantitative phenotypic signatures, we can detect and classify even subtle alterations in many biological processes simultaneously. We term our approach hyperdimensional in vivo phenotyping. To illustrate the power of hyperdimensional in vivo phenotyping, we have analysed the effects of several classes of teratogens on cartilage formation using 200 independent morphological measurements, and identified similarities and differences that correlate well with their known mechanisms of actions in mammals.


Subject(s)
Tomography/methods , Vertebrates/anatomy & histology , Animals , Bone and Bones/abnormalities , Bone and Bones/drug effects , Bone and Bones/pathology , Craniofacial Abnormalities/pathology , Image Processing, Computer-Assisted , Larva/drug effects , Phenotype , Teratogens/toxicity , Vertebrates/growth & development , Zebrafish/anatomy & histology , Zebrafish/growth & development
15.
Lab Chip ; 12(4): 711-6, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22159032

ABSTRACT

The zebrafish larva is an optically-transparent vertebrate model with complex organs that is widely used to study genetics, developmental biology, and to model various human diseases. In this article, we present a set of novel technologies that significantly increase the throughput and capabilities of our previously described vertebrate automated screening technology (VAST). We developed a robust multi-thread system that can simultaneously process multiple animals. System throughput is limited only by the image acquisition speed rather than by the fluidic or mechanical processes. We developed image recognition algorithms that fully automate manipulation of animals, including orienting and positioning regions of interest within the microscope's field of view. We also identified the optimal capillary materials for high-resolution, distortion-free, low-background imaging of zebrafish larvae.


Subject(s)
Algorithms , Animals, Genetically Modified/growth & development , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Zebrafish/growth & development , Animals , Animals, Genetically Modified/genetics , Humans , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Zebrafish/genetics
17.
Cytometry A ; 77(1): 86-96, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19760746

ABSTRACT

Robust detection and localization of biomolecules inside cells is of great importance to better understand the functions related to them. Fluorescence microscopy and specific staining methods make biomolecules appear as point-like signals on image data, often acquired in 3D. Visual detection of such point-like signals can be time consuming and problematic if the 3D images are large, containing many, sometimes overlapping, signals. This sets a demand for robust automated methods for accurate detection of signals in 3D fluorescence microscopy. We propose a new 3D point-source signal detection method that is based on Fourier series. The method consists of two parts, a detector, which is a cosine filter to enhance the point-like signals, and a verifier, which is a sine filter to validate the result from the detector. Compared to conventional methods, our method shows better robustness to noise and good ability to resolve signals that are spatially close. Tests on image data show that the method has equivalent accuracy in signal detection in comparison to visual detection by experts. The proposed method can be used as an efficient point-like signal detection tool for various types of biological 3D image data.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Observer Variation , Signal Detection, Psychological
18.
Cytometry A ; 75(4): 319-28, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19006073

ABSTRACT

Detection and localization of fluorescent signals in relation to other subcellular structures is an important task in various biological studies. Many methods for analysis of fluorescence microscopy image data are limited to 2D. As cells are in fact 3D structures, there is a growing need for robust methods for analysis of 3D data. This article presents an approach for detecting point-like fluorescent signals and analyzing their subnuclear position. Cell nuclei are delineated using marker-controlled (seeded) 3D watershed segmentation. User-defined object and background seeds are given as input, and gradient information defines merging and splitting criteria. Point-like signals are detected using a modified stable wave detector and localized in relation to the nuclear membrane using distance shells. The method was applied to a set of biological data studying the localization of Smad2-Smad4 protein complexes in relation to the nuclear membrane. Smad complexes appear as early as 1 min after stimulation while the highest signal concentration is observed 45 min after stimulation, followed by a concentration decrease. The robust 3D signal detection and concentration measures obtained using the proposed method agree with previous observations while also revealing new information regarding the complex formation.


Subject(s)
Algorithms , Image Cytometry/methods , Microscopy, Fluorescence/methods , Nuclear Envelope/ultrastructure , Software/trends , Animals , Cell Compartmentation/physiology , Cells, Cultured , Image Cytometry/instrumentation , Macromolecular Substances/analysis , Mice , Microscopy, Fluorescence/instrumentation , Nuclear Envelope/physiology , Signal Processing, Computer-Assisted , Smad2 Protein/analysis , Smad4 Protein/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...