Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(9): 3602-3611, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36826516

ABSTRACT

Pharmaceutical deltamethrin (Alpha Max), used as delousing treatments in aquaculture, has raised concerns due to possible negative impacts on the marine environment. A novel approach combining different scientific disciplines has addressed this topic. Acute (mortality) and sublethal effects (i.e., fitness, neurological, immunological, and oxidative responses) of exposure of northern shrimp (Pandalus borealis) were studied in laboratory experiments. Passive water sampling combined with sediment analyses revealed environmental concentrations. Finally, dispersal modeling was performed to predict environmental concentrations. Ecotoxicological analyses showed mortality in shrimp after 1 h of exposure to 2 ng L-1 (1000-fold dilution of treatment dose), revealing a high sensitivity to deltamethrin. Sublethal effects included induction of acetylcholinesterase and acyl CoA oxidase activities and oxidative impairment, which may be linked to neurotoxic responses. Field concentrations of 10-200 ng L-1 in water (100 m from the pens) and

Subject(s)
Pandalidae , Water Pollutants, Chemical , Animals , Acetylcholinesterase/pharmacology , Aquaculture , Water , Water Pollutants, Chemical/toxicity
2.
Water Res ; 222: 118906, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35914503

ABSTRACT

This study investigated the effect of polyethylene and polyvinyl chloride microplastics on the UV fluence response curve for the inactivation of multidrug-resistant E. coli and enterococci in ultrapure water at pH 6.0 ± 0.1. In the absence of microplastics, the UV inactivation of the studied bacteria exhibited an initial resistance followed by a faster inactivation of free (dispersed) bacteria, while in the presence of microplastics, these 2 regimes were followed by an additional regime of slower or no inactivation related to microplastic-associated bacteria (i.e., bacteria aggregated with microplastics resulting in shielding bacteria from UV indicated by tailing at higher UV fluences). The magnitude of the negative effect of microplastics varied with different microplastics (type/particle size) and bacteria (Gram-negative and Gram-positive). Results showed that when the UV transmittance of the microplastic-containing water was not taken into account in calculating UV fluences, the effect of microplastics as protectors of bacteria was overestimated. A UV fluence-based double-exponential microbial inactivation model accounting for both free and microplastic-associated bacteria could describe well the disinfection data. The present study elucidated the effect of microplastics on the performance of UV disinfection, and the approach used herein to prove this concept may guide future research on the investigation of the possible effect of other particles including nanoplastics with different characteristics on the exposure response curve for the inactivation of various microorganisms by physical and chemical disinfection processes in different water and wastewater matrices.


Subject(s)
Microplastics , Plastics , Anti-Bacterial Agents/pharmacology , Bacteria , Disinfection/methods , Escherichia coli , Ultraviolet Rays , Wastewater/microbiology
3.
Environ Sci Technol ; 56(12): 7945-7953, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35670489

ABSTRACT

Hexachlorobenzene (HCB), listed on the Stockholm Convention on persistent organic pollutants and regulated as a hazardous priority pollutant by the Water Framework Directive (WFD), is ubiquitously distributed in the environment and assumed to mildly biomagnify in aquatic foodwebs. The proposal to include trophic magnification factors (TMFs) in the procedure for comparing contaminant levels in biota at different trophic levels (TLs) with WFD environmental quality standards requires adequate selection of TMFs. In the first step of our study, we compared two independently obtained datasets of pentachlorobenzene (PeCB) and HCB concentration ratios from passive sampling (PS) in water and in fish through routine monitoring programs in Norway to evaluate possible biomagnification. In this procedure, PeCB is used for benchmarking the bioconcentration in fish, and the observed HCB/PeCB ratios in fish are compared with ratios expected in the case of (i) HCB bioconcentration or (ii) biomagnification using published TMF values. Results demonstrate that it is not possible to confirm that HCB biomagnifies in fish species that would be used for WFD monitoring in Norway and challenges the proposed monitoring procedures for such compounds in Norwegian or European waters. In the second step, fish-water chemical activity ratios for HCB and PeCB as well as for polychlorinated biphenyls where biota and PS were conducted alongside were calculated and found to rarely exceed unity for cod (Gadus morhua), a fish species with a TL of approximately 4.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring/methods , Fishes , Food Chain , Hexachlorobenzene/analysis , Polychlorinated Biphenyls/analysis , Water , Water Pollutants, Chemical/analysis
4.
Sci Rep ; 11(1): 11231, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045522

ABSTRACT

The identification and prioritisation of water bodies presenting elevated levels of anthropogenic chemicals is a key aspect of environmental monitoring programmes. Albeit this is challenging owing to geographical scales, choice of indicator aquatic species used for chemical monitoring, and inherent need for an understanding of contaminant fate and distribution in the environment. Here, we propose an innovative methodology for identifying and ranking water bodies according to their levels of hydrophobic organic contaminants (HOCs) in water. This is based on a unique passive sampling dataset acquired over a 10-year period with silicone rubber exposures in surface water bodies across Europe. We show with these data that, far from point sources of contamination, levels of hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) in water approach equilibrium with atmospheric concentrations near the air/water surface. This results in a relatively constant ratio of their concentrations in the water phase. This, in turn, allows us to (i) identify sites of contamination with either of the two chemicals when the HCB/PeCB ratio deviates from theory and (ii) define benchmark levels of other HOCs in surface water against those of HCB and/or PeCB. For two polychlorinated biphenyls (congener 28 and 52) used as model chemicals, differences in contamination levels between the more contaminated and pristine sites are wider than differences in HCB and PeCB concentrations endorsing the benchmarking procedure.

5.
Chemosphere ; 224: 455-460, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30831496

ABSTRACT

Passive sampling is a powerful technique for the sampling hydrophobic organic contaminants present at trace level in water. A robust application of performance reference compounds (PRCs) for the estimation of in situ sampling rates, requires that dissipation of PRC and uptake of target compounds follow the same processes, i.e. the existence of isotropic exchange between the sampler and water. We report circumstantial evidence that in the presence of heavy fouling of samplers by suspended particulate matter (SPM) when deployed in a freshwater environment, SPM deposited on the surface of the sampler enhances the release of PRCs and reduces the uptake of target compounds. In this case, anisotropy of exchange resulted in on average a factor of 3.9 difference in estimate freely dissolved concentration in water.


Subject(s)
Environmental Monitoring/methods , Hydrophobic and Hydrophilic Interactions , Water Pollutants, Chemical/analysis , Anisotropy , Reference Standards , Water Pollutants, Chemical/isolation & purification
6.
Environ Sci Technol ; 47(20): 11660-7, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24020983

ABSTRACT

Equilibrium passive sampling through in vivo implantation can help circumvent complex extractions of biological tissues, provide more accurate information on chemical contaminant burden based on the fugacity of a chemical in an organism rather than conventional normalization to lipid content, and improve the assessment of contaminant bioaccumulation potential. Here, we explored the feasibility of in vivo implantation for the passive sampling of neutral hydrophobic contaminants through the insertion of a silicone tag into brown trout (Salmo trutta). Implanted fish from the upper reaches of the River Alna (Oslo, Norway) were relocated to a polluted section of the river for a 28 day caged exposure. "Whole fish" lipid-silicone distribution coefficients (Dlip-sil) were calculated for chlorinated compounds measured in whole fish and in silicone tags of 13 fish. Dlip-sil ranged from 13.6 to 40.0 g g(-1) for polychlorinated biphenyl congeners 28-156 (CB28 and CB156), respectively, and are in close agreement with literature in vitro lipid phase and tissue-based lipid-silicone partition coefficients. After dissection a further of eight fish, muscle and liver samples were analyzed separately. Muscle-based Dlip-sil values similar to the whole fish data were observed. However, lipid-normalized concentrations in the liver tended to be lower than in muscle for most compounds (by up to 50%). Values of whole fish Dlip-sil for brominated diphenyl ethers determined for three fish were in the range of 8.6-51 g g(-1) and in agreement with chlorinated substances. Finally, fugacity ratios calculated from equilibrium concentrations in fish-implanted and water-exposed silicone provided information on the bioaccumulation for chlorinated compounds as well as for some polycyclic aromatic hydrocarbons. Equilibrium passive sampling through in vivo implantation can allow the comparison of a chemical's activity or fugacity in biotic as well as abiotic environmental compartments and at different trophic levels up to humans.


Subject(s)
Environmental Monitoring/methods , Trout/metabolism , Water Pollutants, Chemical/analysis , Animals , Humans , Hydrocarbons, Chlorinated/analysis , Lipids/chemistry , Liver/metabolism , Muscles/metabolism , Silicones/analysis , Water
7.
Environ Toxicol Chem ; 31(12): 2724-38, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23012256

ABSTRACT

The implementation of strict environmental quality standards for polar organic priority pollutants poses a challenge for monitoring programs. The polar organic chemical integrative sampler (POCIS) may help to address the challenge of measuring low and fluctuating trace concentrations of such organic contaminants, offering significant advantages over traditional sampling. In the present review, the authors evaluate POCIS calibration methods and factors affecting sampling rates together with reported environmental applications. Over 300 compounds have been shown to accumulate in POCIS, including pesticides, pharmaceuticals, hormones, and industrial chemicals. Polar organic chemical integrative sampler extracts have been used for both chemical and biological analyses. Several different calibration methods have been described, which makes it difficult to directly compare sampling rates. In addition, despite the fact that some attempts to correlate sampling rates with the properties of target compounds such as log K(OW) have been met with varying success, an overall model that can predict uptake is lacking. Furthermore, temperature, water flow rates, salinity, pH, and fouling have all been shown to affect uptake; however, there is currently no robust method available for adjusting for these differences. Overall, POCIS has been applied to a wide range of sampling environments and scenarios and has been proven to be a useful screening tool. However, based on the existing literature, a more mechanistic approach is required to increase understanding and thus improve the quantitative nature of the measurements.


Subject(s)
Environmental Monitoring/instrumentation , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Calibration , Environmental Monitoring/methods
9.
J Environ Monit ; 13(9): 2420-6, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21789333

ABSTRACT

Thirty two polychlorinated biphenyl congeners (PCBs), hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) were analysed in passive sampler extracts from surface water-exposed semipermeable membrane devices (SPMDs) and in bed sediment samples from a small urban watercourse, the River Alna (Oslo, Norway). Performance reference compound-corrected data from the passive samplers deployed at three sites along the river were used to track PCB contamination in the overlying water. SPMDs were able to detect an increase in dissolved PCB concentrations at the site furthest downstream that was corroborated by bed sediment concentrations. In comparison, no major increase in concentration of HCB, PeCB or PAHs could be observed. Comparison of passive sampling-based overlying water concentrations with total concentrations measured in bed sediments supports the possibility of further PCB sources upstream of the study area. Diagnostic PAH ratios (from SPMDs) and PCB congener pattern (from sediments) were used in an attempt to identify possible contaminant sources to the Alna River. Selected PAH diagnostic ratios support a multiple emission source scenario and demonstrate the complexity of identifying specific sources of these compounds to surface waters. PCB congener patterns in sediments from all three sites tend to indicate a source of highly chlorinated PCBs (of the Archlor 1260 type) and either a source of lower chlorinated PCBs or the less-likely occurrence of dechlorination in sediment. Information collected during the present screening study also confirms the Alna River as a continuous source of PCBs to the Oslofjord.


Subject(s)
Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Chlorobenzenes/analysis , Cities , Geologic Sediments/chemistry , Hexachlorobenzene/analysis , Norway , Water Pollution, Chemical/statistics & numerical data , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...