Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(2): e0403622, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38205958

ABSTRACT

Extensively drug-resistant (XDR) Klebsiella pneumoniae inflict a notable burden on healthcare worldwide. Of specific concern are strains producing carbapenem-hydrolyzing enzymes, as the therapeutic options for these strains are still very limited. Specific sequence types of K. pneumoniae have been noted for their epidemic occurrence globally, but the mechanisms behind the success of specific clones remain unclear. Herein, we have characterized 20 high-risk clones (HiRCs) and 10 non-HiRCs of XDR K. pneumoniae, exploring factors connected to the epidemiological success of some clones. Isolates were subjected to core genome multilocus sequence typing analysis to determine the clonal relationships of the isolates and subsequently characterized with regard to features known to be linked to overall bacterial fitness and virulence. The genomes were analyzed in silico for capsule types, O antigens, virulence factors, antimicrobial resistance genes, prophages, and CRISPR-Cas loci. In vitro growth experiments were conducted to retrieve proxies for absolute and relative fitness for 11 HiRC and 9 non-HiRC isolates selected based on the clonal groups they belonged to, and infections in a Galleria mellonella insect model were used to evaluate the virulence of the isolates in vivo. This study did not find evidence that virulence factors, prophages, CRISPR-Cas loci, or fitness measured in vitro alone would contribute to the global epidemiological success of specific clones of carbapenemase-producing XDR K. pneumoniae. However, this study did find the HiRC group to be more virulent than the non-HiRC group when measured in vivo in a model with G. mellonella. This suggests that the virulence and epidemiological success of certain clones of K. pneumoniae cannot be explained by individual traits investigated in this study and thus warrant further experiments in the future.IMPORTANCEHerein, we explored potential explanations for the successfulness of some epidemic or high-risk clones of carbapenemase-producing Klebsiella pneumoniae. We found differences in mortality in a larva model but found no clear genomic differences in known virulence markers. Most of the research on virulence in K. pneumoniae has been focused on hypervirulent strains, but here, we try to understand differences within the group of highly resistant strains. The results from the larva virulence model could be used to design experiments in higher animals. Moreover, the data could provide further support to a differentiated infection control approach against extensively drug-resistant strains, based on their classification as high-risk clones.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Animals , Virulence/genetics , Klebsiella pneumoniae/genetics , Klebsiella Infections/microbiology , Bacterial Proteins/genetics , beta-Lactamases/genetics , Virulence Factors/genetics , Larva , Clone Cells , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
2.
Int J Antimicrob Agents ; 62(5): 106967, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716575

ABSTRACT

BACKGROUND: Combination therapy can enhance the activity of available antibiotics against multidrug-resistant Gram-negative bacteria. This study assessed the effects of polymyxin B combinations against carbapenemase-producing Klebsiella pneumoniae (K. pneumoniae). METHODS: Twenty clinical K. pneumoniae strains producing NDM-1 (n = 8), OXA-48-like (n = 10), or both NDM-1 and OXA-48-like (n = 2) carbapenemases were used. Whole-genome sequencing was applied to detect resistance genes (e.g. encoding antibiotic-degrading enzymes) and sequence alterations influencing permeability or efflux. The activity of polymyxin B in combination with aztreonam, fosfomycin, meropenem, minocycline, or rifampicin was investigated in 24-hour time-lapse microscopy experiments. Endpoint samples were spotted on plates with and without polymyxin B at 4 x MIC to assess resistance development. Finally, associations between synergy and bacterial genetic traits were explored. RESULTS: Synergistic and bactericidal effects were observed with polymyxin B in combination with all other antibiotics: aztreonam (11 of 20 strains), fosfomycin (16 of 20), meropenem (10 of 20), minocycline (18 of 20), and rifampicin (15 of 20). Synergy was found with polymyxin B in combination with fosfomycin, minocycline, or rifampicin against all nine polymyxin-resistant strains. Wildtype mgrB was associated with polymyxin B and aztreonam synergy (P = 0.0499). An absence of arr-2 and arr-3 was associated with synergy of polymyxin B and rifampicin (P = 0.0260). Emergence of populations with reduced polymyxin B susceptibility was most frequently observed with aztreonam and meropenem. CONCLUSION: Combinations of polymyxin B and minocycline or rifampicin were most active against the tested NDM-1 and OXA-48-like-producing K. pneumoniae. Biologically plausible genotype-phenotype associations were found. Such information might accelerate the search for promising combinations and guide individualised treatment.


Subject(s)
Fosfomycin , Polymyxin B , Polymyxin B/pharmacology , Aztreonam/pharmacology , Meropenem/pharmacology , Klebsiella pneumoniae , Minocycline/pharmacology , Fosfomycin/pharmacology , Rifampin/pharmacology , Drug Synergism , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , beta-Lactamases/pharmacology , Microbial Sensitivity Tests
3.
Antibiotics (Basel) ; 11(11)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36421290

ABSTRACT

Double-carbapenem combinations have shown synergistic potential against carbapenemase-producing Enterobacterales, but data remain inconclusive. This study evaluated the activity of double-carbapenem combinations against 51 clinical KPC-2-, OXA-48-, NDM-1, and NDM-5-producing Escherichia coli and Klebsiella pneumoniae and against constructed E. coli strains harboring genes encoding KPC-2, OXA-48, or NDM-1 in an otherwise isogenic background. Two-drug combinations of ertapenem, meropenem, and doripenem were evaluated in 24 h time-lapse microscopy experiments with a subsequent spot assay and in static time-kill experiments. An enhanced effect in time-lapse microscopy experiments at 24 h and synergy in the spot assay was detected with one or more combinations against 4/14 KPC-2-, 17/17 OXA-48-, 2/17 NDM-, and 1/3 NDM-1+OXA-48-producing clinical isolates. Synergy rates were higher against meropenem- and doripenem-susceptible isolates and against OXA-48 producers. NDM production was associated with significantly lower synergy rates in E. coli. In time-kill experiments with constructed KPC-2-, OXA-48- and NDM-1-producing E. coli, 24 h synergy was not observed; however, synergy at earlier time points was found against the KPC-2- and OXA-48-producing constructs. Our findings indicate that the benefit of double-carbapenem combinations against carbapenemase-producing E. coli and K. pneumoniae is limited, especially against isolates that are resistant to the constituent antibiotics and produce NDM.

4.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077146

ABSTRACT

The EPIC consortium brings together experts from a wide range of fields that include clinical, molecular and basic microbiology, infectious diseases, computational biology and chemistry, drug discovery and design, bioinformatics, biochemistry, biophysics, pharmacology, toxicology, veterinary sciences, environmental sciences, and epidemiology. The main question to be answered by the EPIC alliance is the following: "What is the best approach for data mining on carbapenemase inhibitors and how to translate this data into experiments?" From this forum, we propose that the scientific community think up new strategies to be followed for the discovery of new carbapenemase inhibitors, so that this process is efficient and capable of providing results in the shortest possible time and within acceptable time and economic costs.


Subject(s)
Computational Biology , beta-Lactamases , Bacterial Proteins , Computational Biology/methods , Computer Simulation
5.
Antimicrob Agents Chemother ; 66(6): e0029022, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35652643

ABSTRACT

ß-Lactam antibiotics are the first choice for the treatment of most bacterial infections. However, the increased prevalence of ß-lactamases, in particular extended-spectrum ß-lactamases, in pathogenic bacteria has severely limited the possibility of using ß-lactam treatments. Combining ß-lactam antibiotics with ß-lactamase inhibitors can restore treatment efficacy by negating the effect of the ß-lactamase and has become increasingly important against infections caused by ß-lactamase-producing strains. Not surprisingly, bacteria with resistance to even these combinations have been found in patients. Studies on the development of bacterial resistance to ß-lactam/ß-lactamase inhibitor combinations have focused mainly on the effects of single, chromosomal or plasmid-borne, ß-lactamases. However, clinical isolates often carry more than one ß-lactamase in addition to multiple other resistance genes. Here, we investigate how the evolutionary trajectories of the development of resistance to three commonly used ß-lactam/ß-lactamase inhibitor combinations, ampicillin-sulbactam, piperacillin-tazobactam, and ceftazidime-avibactam, were affected by the presence of three common ß-lactamases, TEM-1, CTX-M-15, and OXA-1. First-step resistance was due mainly to extensive gene amplifications of one or several of the ß-lactamase genes where the amplification pattern directly depended on the respective drug combination. Amplifications also served as a stepping-stone for high-level resistance in combination with additional mutations that reduced drug influx or mutations in the ß-lactamase gene blaCTX-M-15. This illustrates that the evolutionary trajectories of resistance to ß-lactam/ß-lactamase inhibitor combinations are strongly influenced by the frequent and transient nature of gene amplifications and how the presence of multiple ß-lactamases shapes the evolution to higher-level resistance.


Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Escherichia coli , Humans , Lactams/pharmacology , Microbial Sensitivity Tests , Monobactams/pharmacology , Piperacillin, Tazobactam Drug Combination/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/genetics , beta-Lactamases/pharmacology
6.
ACS Omega ; 7(5): 4550-4562, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35155946

ABSTRACT

Being the second leading cause of death and the leading cause of disability-adjusted life years worldwide, infectious diseases remain-contrary to earlier predictions-a major consideration for the public health of the 21st century. Resistance development of microbes to antimicrobial drugs constitutes a large part of this devastating problem. The most widely spread mechanism of bacterial resistance operates through the degradation of existing ß-lactam antibiotics. Inhibition of metallo-ß-lactamases is expected to allow the continued use of existing antibiotics, whose applicability is becoming ever more limited. Herein, we describe the synthesis, the metallo-ß-lactamase inhibition activity, the cytotoxicity studies, and the NMR spectroscopic determination of the protein binding site of phosphonamidate monoesters. The expression of single- and double-labeled NDM-1 and its backbone NMR assignment are also disclosed, providing helpful information for future development of NDM-1 inhibitors. We show phosphonamidates to have the potential to become a new generation of antibiotic therapeutics to combat metallo-ß-lactamase-resistant bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...