Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
J Clin Endocrinol Metab ; 109(6): e1462-e1467, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38466742

ABSTRACT

In endocrinology, the types and quantity of digital data are increasing rapidly. Computing capabilities are also developing at an incredible rate, as illustrated by the recent expansion in the use of popular generative artificial intelligence (AI) applications. Numerous diagnostic and therapeutic devices using AI have already entered routine endocrine practice, and developments in this field are expected to continue to accelerate. Endocrinologists will need to be supported in managing AI applications. Beyond technological training, interdisciplinary vision is needed to encompass the ethical and legal aspects of AI, to manage the profound impact of AI on patient/provider relationships, and to maintain an optimal balance between human input and AI in endocrinology.


Subject(s)
Artificial Intelligence , Endocrinology , Humans , Endocrinology/methods , Endocrinology/trends
2.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 2879-2896, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35749321

ABSTRACT

In this paper, we propose a new method to perform data augmentation in a reliable way in the High Dimensional Low Sample Size (HDLSS) setting using a geometry-based variational autoencoder (VAE). Our approach combines the proposal of 1) a new VAE model, the latent space of which is modeled as a Riemannian manifold and which combines both Riemannian metric learning and normalizing flows and 2) a new generation scheme which produces more meaningful samples especially in the context of small data sets. The method is tested through a wide experimental study where its robustness to data sets, classifiers and training samples size is stressed. It is also validated on a medical imaging classification task on the challenging ADNI database where a small number of 3D brain magnetic resonance images (MRIs) are considered and augmented using the proposed VAE framework. In each case, the proposed method allows for a significant and reliable gain in the classification metrics. For instance, balanced accuracy jumps from 66.3% to 74.3% for a state-of-the-art convolutional neural network classifier trained with 50 MRIs of cognitively normal (CN) and 50 Alzheimer disease (AD) patients and from 77.7% to 86.3% when trained with 243 CN and 210 AD while improving greatly sensitivity and specificity metrics.

3.
Artif Intell Med ; 126: 102258, 2022 04.
Article in English | MEDLINE | ID: mdl-35346441

ABSTRACT

Population monitoring is a challenge in many areas such as public health and ecology. We propose a method to model and monitor population distributions over space and time, in order to build an alert system for spatio-temporal data changes. Assuming that mixture models can correctly model populations, we propose a new version of the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and their parameters at the same time. This algorithm is compared to existing methods on several simulated datasets. We then combine the algorithm with a temporal statistical model, allowing for the detection of dynamical changes in population distributions, and call the result a spatio-temporal mixture process (STMP). We test STMPs on synthetic data, and consider several different behaviors of the distributions, to fit this process. Finally, we validate STMPs on a real data set of positive diagnosed patients to coronavirus disease 2019. We show that our pipeline correctly models evolving real data and detects epidemic changes.


Subject(s)
COVID-19 , Algorithms , COVID-19/epidemiology , Humans , Models, Statistical
4.
Eur J Endocrinol ; 186(2): 297-308, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-34914631

ABSTRACT

OBJECTIVE: Cushing's syndrome represents a state of excessive glucocorticoids related to glucocorticoid treatments or to endogenous hypercortisolism. Cushing's syndrome is associated with high morbidity, with significant inter-individual variability. Likewise, adrenal insufficiency is a life-threatening condition of cortisol deprivation. Currently, hormone assays contribute to identify Cushing's syndrome or adrenal insufficiency. However, no biomarker directly quantifies the biological glucocorticoid action. The aim of this study was to identify such markers. DESIGN: We evaluated whole blood DNA methylome in 94 samples obtained from patients with different glucocorticoid states (Cushing's syndrome, eucortisolism, adrenal insufficiency). We used an independent cohort of 91 samples for validation. METHODS: Leukocyte DNA was obtained from whole blood samples. Methylome was determined using the Illumina methylation chip array (~850 000 CpG sites). Both unsupervised (principal component analysis) and supervised (Limma) methods were used to explore methylome profiles. A Lasso-penalized regression was used to select optimal discriminating features. RESULTS: Whole blood methylation profile was able to discriminate samples by their glucocorticoid status: glucocorticoid excess was associated with DNA hypomethylation, recovering within months after Cushing's syndrome correction. In Cushing's syndrome, an enrichment in hypomethylated CpG sites was observed in the region of FKBP5 gene locus. A methylation predictor of glucocorticoid excess was built on a training cohort and validated on two independent cohorts. Potential CpG sites associated with the risk for specific complications, such as glucocorticoid-related hypertension or osteoporosis, were identified, needing now to be confirmed on independent cohorts. CONCLUSIONS: Whole blood DNA methylome is dynamically impacted by glucocorticoids. This biomarker could contribute to better assessment of glucocorticoid action beyond hormone assays.


Subject(s)
Cushing Syndrome/genetics , DNA Methylation/genetics , DNA/blood , Epigenome/genetics , Glucocorticoids/blood , Glucocorticoids/genetics , Adolescent , Adrenal Insufficiency/blood , Adrenal Insufficiency/genetics , Adult , Aged , Biomarkers/blood , CpG Islands/genetics , Cushing Syndrome/blood , Female , Humans , Hydrocortisone/analysis , Hydrocortisone/blood , Hydrocortisone/urine , Leukocytes/chemistry , Male , Middle Aged , Saliva/chemistry , Tacrolimus Binding Proteins/genetics
5.
Sci Rep ; 11(1): 8020, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33850174

ABSTRACT

Alzheimer's disease (AD) is characterized by the progressive alterations seen in brain images which give rise to the onset of various sets of symptoms. The variability in the dynamics of changes in both brain images and cognitive impairments remains poorly understood. This paper introduces AD Course Map a spatiotemporal atlas of Alzheimer's disease progression. It summarizes the variability in the progression of a series of neuropsychological assessments, the propagation of hypometabolism and cortical thinning across brain regions and the deformation of the shape of the hippocampus. The analysis of these variations highlights strong genetic determinants for the progression, like possible compensatory mechanisms at play during disease progression. AD Course Map also predicts the patient's cognitive decline with a better accuracy than the 56 methods benchmarked in the open challenge TADPOLE. Finally, AD Course Map is used to simulate cohorts of virtual patients developing Alzheimer's disease. AD Course Map offers therefore new tools for exploring the progression of AD and personalizing patients care.


Subject(s)
Alzheimer Disease , Brain , Aged , Humans , Male , Neuroimaging
6.
Entropy (Basel) ; 23(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924060

ABSTRACT

Network analysis provides a rich framework to model complex phenomena, such as human brain connectivity. It has proven efficient to understand their natural properties and design predictive models. In this paper, we study the variability within groups of networks, i.e., the structure of connection similarities and differences across a set of networks. We propose a statistical framework to model these variations based on manifold-valued latent factors. Each network adjacency matrix is decomposed as a weighted sum of matrix patterns with rank one. Each pattern is described as a random perturbation of a dictionary element. As a hierarchical statistical model, it enables the analysis of heterogeneous populations of adjacency matrices using mixtures. Our framework can also be used to infer the weight of missing edges. We estimate the parameters of the model using an Expectation-Maximization-based algorithm. Experimenting on synthetic data, we show that the algorithm is able to accurately estimate the latent structure in both low and high dimensions. We apply our model on a large data set of functional brain connectivity matrices from the UK Biobank. Our results suggest that the proposed model accurately describes the complex variability in the data set with a small number of degrees of freedom.

7.
IEEE Trans Pattern Anal Mach Intell ; 43(9): 3196-3213, 2021 09.
Article in English | MEDLINE | ID: mdl-32175856

ABSTRACT

Gaussian graphical models (GGM) are often used to describe the conditional correlations between the components of a random vector. In this article, we compare two families of GGM inference methods: the nodewise approach and the penalised likelihood maximisation. We demonstrate on synthetic data that, when the sample size is small, the two methods produce graphs with either too few or too many edges when compared to the real one. As a result, we propose a composite procedure that explores a family of graphs with a nodewise numerical scheme and selects a candidate among them with an overall likelihood criterion. We demonstrate that, when the number of observations is small, this selection method yields graphs closer to the truth and corresponding to distributions with better KL divergence with regards to the real distribution than the other two. Finally, we show the interest of our algorithm on two concrete cases: first on brain imaging data, then on biological nephrology data. In both cases our results are more in line with current knowledge in each field.

8.
Front Neurol ; 9: 235, 2018.
Article in English | MEDLINE | ID: mdl-29780348

ABSTRACT

Repeated failures in clinical trials for Alzheimer's disease (AD) have raised a strong interest for the prodromal phase of the disease. A better understanding of the brain alterations during this early phase is crucial to diagnose patients sooner, to estimate an accurate disease stage, and to give a reliable prognosis. According to recent evidence, structural alterations in the brain are likely to be sensitive markers of the disease progression. Neuronal loss translates in specific spatiotemporal patterns of cortical atrophy, starting in the enthorinal cortex and spreading over other cortical regions according to specific propagation pathways. We developed a digital model of the cortical atrophy in the left hemisphere from prodromal to diseased phases, which is built on the temporal alignment and combination of several short-term observation data to reconstruct the long-term history of the disease. The model not only provides a description of the spatiotemporal patterns of cortical atrophy at the group level but also shows the variability of these patterns at the individual level in terms of difference in propagation pathways, speed of propagation, and age at propagation onset. Longitudinal MRI datasets of patients with mild cognitive impairments who converted to AD are used to reconstruct the cortical atrophy propagation across all disease stages. Each observation is considered as a signal spatially distributed on a network, such as the cortical mesh, each cortex location being associated to a node. We consider how the temporal profile of the signal varies across the network nodes. We introduce a statistical mixed-effect model to describe the evolution of the cortex alterations. To ensure a spatiotemporal smooth propagation of the alterations, we introduce a constrain on the propagation signal in the model such that neighboring nodes have similar profiles of the signal changes. Our generative model enables the reconstruction of personalized patterns of the neurodegenerative spread, providing a way to estimate disease progression stages and predict the age at which the disease will be diagnosed. The model shows that, for instance, APOE carriers have a significantly higher pace of cortical atrophy but not earlier atrophy onset.

9.
Neuroimage Clin ; 9: 44-9, 2015.
Article in English | MEDLINE | ID: mdl-26288755

ABSTRACT

Examining the dynamics of stroke ischemia is limited by the standard use of 2D-volume or voxel-based analysis techniques. Recently developed spatiotemporal models such as the 4D metamorphosis model showed promise for capturing ischemia dynamics. We used a 4D metamorphosis model to evaluate acute ischemic stroke lesion morphology from the acute diffusion-weighted imaging (DWI) to final T2-weighted imaging (T2-w). In 20 representative patients, we metamorphosed the acute lesion to subacute lesion to final infarct. From the DWI lesion deformation maps we identified dynamic lesion areas and examined their association with perfusion values inside and around the lesion edges, blinded to reperfusion status. We then tested the model in ten independent patients from the STroke Imaging Repository (STIR). Perfusion values varied widely between and within patients, and were similar in contracting and expanding DWI areas in many patients in both datasets. In 25% of patients, the perfusion values were higher in DWI-contracting than DWI-expanding areas. A similar wide range of perfusion values and ongoing expansion and contraction of the DWI lesion were seen subacutely. There was more DWI contraction and less expansion in patients who received thrombolysis, although with widely ranging perfusion values that did not differ. 4D metamorphosis modeling shows promise as a method to improve use of multimodal imaging to understand the evolution of acute ischemic tissue towards its fate.


Subject(s)
Brain Ischemia/pathology , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Stroke/pathology , Acute Disease , Aged , Humans
10.
Neuroimage Clin ; 5: 332-40, 2014.
Article in English | MEDLINE | ID: mdl-25161899

ABSTRACT

We extend the image-to-image metamorphosis into constrained longitudinal metamorphosis. We apply it to estimate an evolution scenario, in patients with acute ischemic stroke, of both scattered and solitary ischemic lesions visible on serial MR perfusion weighted imaging from acute to subacute stages. We then estimate a patient-specific residual map that enables us to capture the most relevant shape and intensity changes, continuously, as the lesion evolves from acute through subacute to chronic timepoints until merging into the final image. We detect areas with high residuals (i.e., high dynamics) and identify areas that became part of the final T2-w lesion obtained at ≥ 1 month after stroke. This allows the investigation of the dynamic influence of perfusion values on the final lesion outcome as seen on T2-w imaging. The model provides detailed insights into stroke lesion dynamic evolution in space and time that will help identify factors that determine final outcome and identify targets for interventions to improve outcome.


Subject(s)
Brain Ischemia/pathology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Stroke/pathology , Aged , Female , Humans , Male
11.
Stat Med ; 33(20): 3576-99, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-24700632

ABSTRACT

Computerized anatomical atlases play an important role in medical image analysis. While an atlas usually refers to a standard or mean image also called template, which presumably represents well a given population, it is not enough to characterize the observed population in detail. A template image should be learned jointly with the geometric variability of the shapes represented in the observations. These two quantities will in the sequel form the atlas of the corresponding population. The geometric variability is modeled as deformations of the template image so that it fits the observations. In this paper, we provide a detailed analysis of a new generative statistical model based on dense deformable templates that represents several tissue types observed in medical images. Our atlas contains both an estimation of probability maps of each tissue (called class) and the deformation metric. We use a stochastic algorithm for the estimation of the probabilistic atlas given a dataset. This atlas is then used for atlas-based segmentation method to segment the new images. Experiments are shown on brain T1 MRI datasets.


Subject(s)
Algorithms , Anatomy, Artistic , Atlases as Topic , Classification/methods , Models, Statistical , Bayes Theorem , Biometry , Brain/anatomy & histology , Brain/diagnostic imaging , Computer Simulation , Diagnostic Imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Probability , Radiography
13.
Comput Math Methods Med ; 2013: 283593, 2013.
Article in English | MEDLINE | ID: mdl-23853669

ABSTRACT

The spatiotemporal evolution of stroke lesions, from acute injury to final tissue damage, is complex. Diffusion-weighted (DWI) and perfusion-weighted (PWI) imaging is commonly used to detect early ischemic changes and attempts to distinguish between permanently damaged and salvageable tissues. To date, 2D and 3D measures of diffusion/perfusion regions at individual timepoints have been widely used but may underestimate the true lesion spatio-temporal dynamics. Currently there is no spatio-temporal 4D dynamic model that simulates the continuous evolution of ischemic stroke from MR images. We determined whether a 4D current-based diffeomorphic model, developed in the field of statistical modeling for measuring the variability of anatomical surfaces, could estimate patient-specific spatio-temporal continuous evolution for MR PWI (measured as mean transit time, (MTT)) and DWI lesions. In our representative pilot sample, the model fitted the data well. Our dynamic analysis of lesion evolution showed different patterns; for example, some DWI/PWI dynamic changes corresponded with DWI lesion expansion into PWI lesions, but other patterns were much more complex and diverse. There was wide variation in the time when the final tissue damage was reached after stroke for DWI and MTT.


Subject(s)
Brain Ischemia/diagnosis , Diffusion Magnetic Resonance Imaging/statistics & numerical data , Stroke/diagnosis , Aged , Brain/pathology , Brain Ischemia/complications , Computational Biology , Computer Simulation , Diagnosis, Computer-Assisted/statistics & numerical data , Female , Humans , Imaging, Three-Dimensional/statistics & numerical data , Longitudinal Studies , Male , Models, Neurological , Pilot Projects , Stroke/etiology
14.
Article in English | MEDLINE | ID: mdl-24505810

ABSTRACT

Traditional analyses of Functional Magnetic Resonance Imaging (fMRI) use little anatomical information. The registration of the images to a template is based on the individual anatomy and ignores functional information; subsequently detected activations are not confined to gray matter (GM). In this paper, we propose a statistical model to estimate a probabilistic atlas from functional and T1 MRIs that summarizes both anatomical and functional information and the geometric variability of the population. Registration and Segmentation are performed jointly along the atlas estimation and the functional activity is constrained to the GM, increasing the accuracy of the atlas.


Subject(s)
Artificial Intelligence , Brain/anatomy & histology , Brain/physiology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Multimodal Imaging/methods , Pattern Recognition, Automated/methods , Algorithms , Bayes Theorem , Computer Simulation , Data Interpretation, Statistical , Humans , Image Enhancement/methods , Models, Neurological , Models, Statistical , Reproducibility of Results , Sensitivity and Specificity
15.
Neuroimage Clin ; 1(1): 164-78, 2012.
Article in English | MEDLINE | ID: mdl-24179749

ABSTRACT

Over the last 15 years, basic thresholding techniques in combination with standard statistical correlation-based data analysis tools have been widely used to investigate different aspects of evolution of acute or subacute to late stage ischemic stroke in both human and animal data. Yet, a wave of biology-dependent and imaging-dependent issues is still untackled pointing towards the key question: "how does an ischemic stroke evolve?" Paving the way for potential answers to this question, both magnetic resonance (MRI) and CT (computed tomography) images have been used to visualize the lesion extent, either with or without spatial distinction between dead and salvageable tissue. Combining diffusion and perfusion imaging modalities may provide the possibility of predicting further tissue recovery or eventual necrosis. Going beyond these basic thresholding techniques, in this critical appraisal, we explore different semi-automatic or fully automatic 2D/3D medical image analysis methods and mathematical models applied to human, animal (rats/rodents) and/or synthetic ischemic stroke to tackle one of the following three problems: (1) segmentation of infarcted and/or salvageable (also called penumbral) tissue, (2) prediction of final ischemic tissue fate (death or recovery) and (3) dynamic simulation of the lesion core and/or penumbra evolution. To highlight the key features in the reviewed segmentation and prediction methods, we propose a common categorization pattern. We also emphasize some key aspects of the methods such as the imaging modalities required to build and test the presented approach, the number of patients/animals or synthetic samples, the use of external user interaction and the methods of assessment (clinical or imaging-based). Furthermore, we investigate how any key difficulties, posed by the evolution of stroke such as swelling or reperfusion, were detected (or not) by each method. In the absence of any imaging-based macroscopic dynamic model applied to ischemic stroke, we have insights into relevant microscopic dynamic models simulating the evolution of brain ischemia in the hope to further promising and challenging 4D imaging-based dynamic models. By depicting the major pitfalls and the advanced aspects of the different reviewed methods, we present an overall critique of their performances and concluded our discussion by suggesting some recommendations for future research work focusing on one or more of the three addressed problems.

SELECTION OF CITATIONS
SEARCH DETAIL
...