Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
2.
bioRxiv ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37961102

ABSTRACT

Molecular chaperones including the heat-shock protein 70-kilodalton (HSP70) family and the J-domain containing protein (JDP) co-chaperones maintain homeostatic balance in eukaryotic cells through regulation of the proteome. The expansive JDP family helps direct specific HSP70 functions, and yet loss of single JDP-encoding genes is widely tolerated by mammalian cells, suggesting a high degree of redundancy. By contrast, essential JDPs might carry out HSP70-independent functions or fill cell-context dependent, highly specialized roles within the proteostasis network. Using a genetic screen of JDPs in human cancer cell lines, we found the RNA recognition motif (RRM) containing DNAJC17 to be pan-essential and investigated the contribution of its structural domains to biochemical and cellular function. We found that the RRM exerts an auto-inhibitory effect on the ability of DNAJC17 to allosterically activate ATP hydrolysis by HSP70. The J-domain, but neither the RRM nor a distal C-terminal alpha helix are required to rescue cell viability after loss of endogenous DNAJC17 . Knockdown of DNAJC17 leads to relatively few conserved changes in the abundance of individual mRNAs, but instead deranges gene expression through exon skipping, primarily of genes involved in cell cycle progression. Concordant with cell viability experiments, the C-terminal portions of DNAJC17 are dispensable for restoring splicing and G2-M progression. Overall, our findings identify essential cellular JDPs and suggest that diversification in JDP structure extends the HSP70-JDP system to control divergent processes such as RNA splicing. Future investigations into the structural basis for auto-inhibition of the DNAJC17 J-domain and the molecular regulation of splicing by these components may provide insights on how conserved biochemical mechanisms can be programmed to fill unique, non-redundant cellular roles and broaden the scope of the proteostasis network.

3.
JCI Insight ; 7(23)2022 12 08.
Article in English | MEDLINE | ID: mdl-36282590

ABSTRACT

Oncogenic FOXO1 gene fusions drive a subset of rhabdomyosarcoma (RMS) with poor survival; to date, these cancer drivers are therapeutically intractable. To identify new therapies for this disease, we undertook an isogenic CRISPR-interference screen to define PAX3-FOXO1-specific genetic dependencies and identified genes in the GATOR2 complex. GATOR2 loss in RMS abrogated aa-induced lysosomal localization of mTORC1 and consequent downstream signaling, slowing G1-S cell cycle transition. In vivo suppression of GATOR2 impaired the growth of tumor xenografts and favored the outgrowth of cells lacking PAX3-FOXO1. Loss of a subset of GATOR2 members can be compensated by direct genetic activation of mTORC1. RAS mutations are also sufficient to decouple mTORC1 activation from GATOR2, and indeed, fusion-negative RMS harboring such mutations exhibit aa-independent mTORC1 activity. A bisteric, mTORC1-selective small molecule induced tumor regressions in fusion-positive patient-derived tumor xenografts. These findings highlight a vulnerability in FOXO1 fusion-positive RMS and provide rationale for the clinical evaluation of bisteric mTORC1 inhibitors, currently in phase I testing, to treat this disease. Isogenic genetic screens can, thus, identify potentially exploitable vulnerabilities in fusion-driven pediatric cancers that otherwise remain mostly undruggable.


Subject(s)
Neoplasms , Child , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Forkhead Box Protein O1/genetics
4.
Cell Rep ; 28(9): 2317-2330.e8, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31461649

ABSTRACT

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor and bi-functional lipid and protein phosphatase. We report that the metabolic regulator pyruvate dehydrogenase kinase1 (PDHK1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The PTEN protein phosphatase dephosphorylates nuclear factor κB (NF-κB)-activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NF-κB target gene. Loss of the PTEN protein phosphatase upregulates PDHK1 to induce aerobic glycolysis and PDHK1 cellular dependence. PTEN-deficient human tumors harbor increased PDHK1, a biomarker of decreased patient survival. This study uncovers a PTEN-regulated signaling pathway and reveals PDHK1 as a potential target in PTEN-deficient cancers.


Subject(s)
Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics , Animals , Cell Line, Tumor , Female , Glycolysis , HEK293 Cells , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , NF-kappa B/metabolism , Neoplasms/genetics , Neoplasms/pathology , PTEN Phosphohydrolase/economics , PTEN Phosphohydrolase/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Repressor Proteins/metabolism
5.
Cancer Res ; 79(3): 546-556, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30538120

ABSTRACT

Chromosomal rearrangements involving receptor tyrosine kinases (RTK) are a clinically relevant oncogenic mechanism in human cancers. These chimeric oncoproteins often contain the C-terminal kinase domain of the RTK joined in cis to various N-terminal, nonkinase fusion partners. The functional role of the N-terminal fusion partner in RTK fusion oncoproteins is poorly understood. Here, we show that distinct N-terminal fusion partners drive differential subcellular localization, which imparts distinct cell signaling and oncogenic properties of different, clinically relevant ROS1 RTK fusion oncoproteins. SDC4-ROS1 and SLC34A2-ROS1 fusion oncoproteins resided on endosomes and activated the MAPK pathway. CD74-ROS1 variants that localized instead to the endoplasmic reticulum (ER) showed compromised activation of MAPK. Forced relocalization of CD74-ROS1 from the ER to endosomes restored MAPK signaling. ROS1 fusion oncoproteins that better activate MAPK formed more aggressive tumors. Thus, differential subcellular localization controlled by the N-terminal fusion partner regulates the oncogenic mechanisms and output of certain RTK fusion oncoproteins. SIGNIFICANCE: ROS1 fusion oncoproteins exhibit differential activation of MAPK signaling according to subcellular localization, with ROS1 fusions localized to endosomes, the strongest activators of MAPK signaling.


Subject(s)
Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Oncogene Proteins, Fusion/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Adenocarcinoma of Lung/enzymology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Endosomes/metabolism , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Signaling System , Mice , Mice, Inbred NOD , Mice, SCID , NIH 3T3 Cells , Oncogene Proteins, Fusion/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Sialyltransferases/genetics , Sialyltransferases/metabolism , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/metabolism , Subcellular Fractions/metabolism , Syndecan-4/genetics , Syndecan-4/metabolism , ras Proteins/genetics , ras Proteins/metabolism
6.
Oncogene ; 37(16): 2181-2196, 2018 04.
Article in English | MEDLINE | ID: mdl-29382926

ABSTRACT

Ewing sarcoma (ES) is an aggressive bone and soft tissue malignancy that predominantly affects children and adolescents. CD99 is a cell surface protein that is highly expressed on ES cells and is required to maintain their malignancy. We screened small molecule libraries for binding to extracellular domain of recombinant CD99 and subsequent inhibition of ES cell growth. We identified two structurally similar FDA-approved compounds, clofarabine and cladribine that selectively inhibited the growth of ES cells in a panel of 14 ES vs. 28 non-ES cell lines. Both drugs inhibited CD99 dimerization and its interaction with downstream signaling components. A membrane-impermeable analog of clofarabine showed similar cytotoxicity in culture, suggesting that it can function through inhibiting CD99 independent of DNA metabolism. Both drugs drastically inhibited anchorage-independent growth of ES cells, but clofarabine was more effective in inhibiting growth of three different ES xenografts. Our findings provide a novel molecular mechanism for clofarabine that involves direct binding to a cell surface receptor CD99 and inhibiting its biological activities.


Subject(s)
12E7 Antigen/metabolism , Bone Neoplasms/pathology , Cell Proliferation/drug effects , Clofarabine/pharmacology , Sarcoma, Ewing/pathology , 12E7 Antigen/antagonists & inhibitors , A549 Cells , Animals , Cell Line, Tumor , Female , Humans , MCF-7 Cells , Mice , Mice, SCID , Protein Binding , Signal Transduction/drug effects , Small Molecule Libraries , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...