Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JACS Au ; 4(5): 1883-1891, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818082

ABSTRACT

The cost and efficiency of direct air capture (DAC) of carbon dioxide (CO2) will be decisive in determining whether this technology can play a large role in decarbonization. To probe the role of meteorological conditions on DAC we examine, at 1 × 1° resolution for the continental United States (U.S.), the impacts of temperature, humidity, atmospheric pressure, and CO2 concentration for a representative amine-based adsorption process. Spatial and temporal variations in atmospheric pressure and CO2 concentration lead to strong variations in the CO2 available in ambient air across the U.S. The specific DAC process that we examine is described by a process model that accounts for both temperature and humidity. A process that assumes the same operating choices at all locations in the continental U.S. shows strong variations in performance, with the most influential variables being the H2O gas phase volume fraction and temperature, both of which are negatively correlated with DAC productivity for the specific process that we consider. The process also shows a moderate positive correlation of ambient CO2 with productivity and recovery. We show that optimizing the DAC process at seven representative locations to reflect temporal and spatial variations in ambient conditions significantly improves the process performance and, more importantly, would lead to different choices in the sites for the best performance than models based on a single set of process conditions. Our work provides a framework for assessing spatial variations in DAC performance that could be applied to any DAC process and indicates that these variations will have important implications in optimizing and siting DAC facilities.

2.
NPJ Urban Sustain ; 3(1): 32, 2023.
Article in English | MEDLINE | ID: mdl-37323541

ABSTRACT

There is a growing recognition that responding to climate change necessitates urban adaptation. We sketch a transdisciplinary research effort, arguing that actionable research on urban adaptation needs to recognize the nature of cities as social networks embedded in physical space. Given the pace, scale and socioeconomic outcomes of urbanization in the Global South, the specificities and history of its cities must be central to the study of how well-known agglomeration effects can facilitate adaptation. The proposed effort calls for the co-creation of knowledge involving scientists and stakeholders, especially those historically excluded from the design and implementation of urban development policies.

3.
MethodsX ; 7: 100699, 2020.
Article in English | MEDLINE | ID: mdl-32300540

ABSTRACT

Global alterations of the hydrologic cycle by humans have led to alarming rates of water shortages and irreversible ecosystem change. Our ability to manage water resources lies in accurately modeling water availability at scales meaningful to management. Although hydrologic models have been used to understand the implications of future climate and land cover change on regional water availability, many modeling approaches fail to integrate human infrastructures (HI) with bio-geophysical drivers to facilitate sustainable regional water resource management. This paper presents an integrated framework, inclusive of modeling and data needs, to quantify the effects of both bio-geophysical and HI influence on regional surface water hydrology. The framework enables the integration of high spatial and temporal anthropogenic alterations of water availability for identifying hot-spots and hot-moments of hydrological stresses within individual river-segments using a hydrologic simulation model, Soil and Water Analysis Tool (SWAT). •A high-resolution river network for the study region with a greater spatial granularity compared to contemporary SWAT applications attempted to account for HI.•The anthropogenic influence on water balance for each river segment was estimated using data on human infrastructures, such as water intakes, power production facilities, discharges, dams, and land transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...