Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Epidemiol ; 8(3): e309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38799260

ABSTRACT

Background: Chronic, low-intensity air pollution exposure has been consistently associated with increased atherosclerosis in adults. However, there was limited research regarding the implications of acute, high-intensity air pollution exposure during childhood. We aimed to determine whether there were any associations between early-life exposure to such an episode and early-life vascular function changes. Methods: We conducted a prospective cohort study of children (<9 years old) who lived in the vicinity of the Hazelwood coal mine fire (n = 206). Vascular function was measured using noninvasive diagnostic methods including carotid intima-media thickness and pulse wave velocity (PWV). Exposure estimates were calculated from prognostic models and location diaries during the exposure period completed by each participant's parent. Linear mixed-effects models were used to determine whether there were any associations between exposure and changes in vascular outcomes at the 3- and 7-year follow-ups and over time. Results: At the 7-year follow-up, each 10 µg/m3 increase in daily PM2.5 in utero was associated with increased PWV (ß = 0.13 m/s; 95% confidence interval [CI] = 0.02, 0.24; P = 0.02). The association between in utero exposure to daily PM2.5 was not altered by adjustment for covariates, body mass index, and maternal fire stress. Each 1 µg/m3 increase in background PM2.5 was associated with increased PWV (ß = 0.68 m/s; 95% CI = 0.10, 1.26; P = 0.025), in children from the in utero exposure group. There was a trend toward smaller PWV (ß = -0.17 m/s; 95% CI = -0.366, 0.02) from the 3- to 7-year follow-up clinic suggesting that the deficits observed previously in children exposed postnatally did not persist. Conclusion: There was a moderate improvement in vascular stiffness of children exposed to PM2.5 from a local coal mine fire in infancy. There was a mild increase in vascular stiffness in children exposed to PM2.5 from a local coal mine fire while their mothers were pregnant.

2.
Environ Res ; 252(Pt 3): 119014, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38685296

ABSTRACT

In 2014, a fire at an open cut coalmine in regional Victoria, Australia burned for 6 weeks. Residents of the nearby town of Morwell were exposed to smoke, which included high levels of fine particulate matter (PM2.5). We investigated whether the long-term effects of PM2.5 on respiratory health were moderated by diet quality. A cross-sectional analysis was conducted of data collected 8.5 years after the mine fire from 282 residents of Morwell and 166 residents from the nearby unexposed town of Sale. Primary outcomes were respiratory symptoms. Exposure was coalmine fire-related PM2.5 and diet quality was assessed as Australian Recommended Food Score (ARFS) derived using the Australian Eating Survey (AES). The moderating effect of diet quality on respiratory outcomes associated with PM2.5 was assessed using logistic regression models, adjusting for potential confounders. Diet quality was poor in this sample, with 60% in the lowest category of overall diet quality. Overall diet quality and fruit and vegetable quality significantly attenuated the association between PM2.5 and prevalence of chronic cough and phlegm. Sauce/condiment intake was associated with a greater effect of PM2.5 on COPD prevalence. No other moderating effects were significant. The moderating effects of overall diet quality and vegetable and fruit intake aligned with a priori hypotheses, suggesting potential protective benefits. While more evidence is needed to confirm these findings, improving diets, especially fruit and vegetable intake, may provide some protection against the effects of smoke exposure from fire events.

3.
Respirology ; 29(1): 56-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37681548

ABSTRACT

BACKGROUND: In 2014, the Hazelwood coalmine fire shrouded the regional Australian town of Morwell in smoke and ash for 6 weeks. One of the fire's by-products, PM2.5 , is associated with an increased risk of COVID-19 and severe disease. However, it is unclear whether the effect persisted for years after exposure. In this study, we surveyed a cohort established prior to the pandemic to determine whether PM2.5 from the coalmine fire increased long-term vulnerability to COVID-19 and severe disease. METHODS: From August to December 2022, 612 members of the Hazelwood Health Study's adult cohort, established in 2016/17, participated in a follow-up survey that included standardized items to capture COVID-19 cases, as well as questions about hospitalization and vaccinations. Associations were evaluated in crude and adjusted logistic regression models. RESULTS: A total of 268 (44%) participants self-reported or met symptom criteria for having had COVID-19 at least once. All models found a positive association, with odds of COVID-19 increasing by between 4% and 30% for a 10 µg/m3 increase in coalmine fire-related PM2.5 exposure. However, the association was significant in only 2 of the 18 models. There were insufficient hospitalizations to examine severity (n = 7; 1%). CONCLUSION: The findings are inconclusive on the effect of coalmine fire-related PM2.5 exposure on long-term vulnerability to COVID-19. Given the positive association that was robust to modelling variations as well as evidence for a causal mechanism, it would be prudent to treat PM2.5 from fire events as a long-term risk factor until more evidence accumulates.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Air Pollutants/adverse effects , Cohort Studies , Australia/epidemiology , COVID-19/epidemiology , Smoke/adverse effects , Environmental Exposure/adverse effects , Air Pollution/adverse effects
4.
Int J Hyg Environ Health ; 241: 113946, 2022 04.
Article in English | MEDLINE | ID: mdl-35228108

ABSTRACT

Due to climate change, catastrophic events such as landscape fires are increasing in frequency and severity. However, relatively little is known about the longer-term mental health outcomes of such events. Follow-up was conducted of 709 adults exposed to smoke from the 2014 Hazelwood mine fire in Morwell, Victoria, Australia. Participants completed two surveys evaluating posttraumatic distress, measured using the Impact of Events Scale-Revised (IES-R), three and six years after the mine fire. Mixed-effects regression models were used to evaluate longitudinal changes in distress. IES-R total scores increased on average by 2.6 points (95%CI: 1.2 to 3.9 points) between the two survey rounds, with increases across all three posttraumatic distress symptom clusters, particularly intrusive symptoms. This increase in distress was evident across all levels of fine particulate matter (PM2.5) exposure to the mine fire smoke. Age was an effect modifier between mine fire PM2.5 exposure and posttraumatic distress, with younger adults impacted more by exposure to the mine fire. Greater exposure to PM2.5 from the mine fire was still associated with increased psychological distress some six years later, with the overall level of distress increasing between the two survey rounds. The follow-up survey coincided with the Black Summer bushfire season in south-eastern Australia and exposure to this new smoke event may have triggered distress sensitivities stemming from exposure to the earlier mine fire. Public health responses to disaster events should take into consideration prior exposures and vulnerable groups, particularly younger adults.


Subject(s)
Air Pollutants , Air Pollution , Fires , Psychological Distress , Adult , Air Pollutants/analysis , Air Pollution/analysis , Coal/analysis , Environmental Exposure/analysis , Humans , Particulate Matter/analysis , Smoking , Victoria
SELECTION OF CITATIONS
SEARCH DETAIL
...