Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 4(3): 102420, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37432858

ABSTRACT

Alternative cleavage and polyadenylation (APA) is a widespread mechanism to generate mRNA isoforms with alternative 3' untranslated regions. Here, we detail a protocol for detecting APA genome wide using direct RNA sequencing technology including computational analysis. We describe steps for RNA sample and library preparation, nanopore sequencing, and data analysis. Experiments and data analysis can be performed over a period of 6-8 days and require molecular biology and bioinformatics skills. For complete details on the use and execution of this protocol, please refer to Polenkowski et al.1.


Subject(s)
Polyadenylation , RNA , Humans , Polyadenylation/genetics , RNA/genetics , Base Sequence , Sequence Analysis, RNA , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
iScience ; 26(1): 105784, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36590164

ABSTRACT

THOC5, a member of the THO complex, is essential for the 3'processing of some inducible genes, the export of a subset of mRNAs and stem cell survival. Here we show that THOC5 depletion results in altered 3'cleavage of >50% of mRNAs and changes in RNA polymerase II binding across genes. THOC5 is recruited close to high-density polymerase II sites, suggesting that THOC5 is involved in transcriptional elongation. Indeed, measurement of elongation rates in vivo demonstrated decreased rates in THOC5-depleted cells. Furthermore, THOC5 is preferentially recruited to its target genes in slow polymerase II cells compared with fast polymerase II cells. Importantly chromatin-associated THOC5 interacts with CDK12 (a modulator of transcription elongation) and RNA helicases DDX5, DDX17, and THOC6 only in slow polymerase II cells. The CDK12/THOC5 interaction promotes CDK12 recruitment to R-loops in a THOC6-dependent manner. These data demonstrate a novel function of THOC5 in transcription elongation.

3.
Oncogenesis ; 10(3): 31, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731669

ABSTRACT

In most human cancers, a large number of proteins with driver mutations are involved in tumor development, implying that multiple fine tuners are involved in cancer formation and/or maintenance. A useful strategy for cancer therapy may therefore be to target multiple cancer type-specific fine tuners. Furthermore, genome-wide association studies of tumor samples have identified a large number of long noncoding (lnc)RNA associated with various types of tumor. In this context we have previously found that C20orf204 (a splice variant of Linc00176) RNA contains a 189 amino acid (AA) long open reading frame (C20orf204-189AA) that is expressed predominantly in hepatocellular carcinoma (HCC). We report here that a protein, C20orf204-189AA, was detected in the nucleus of 14 out of 20 primary HCC, but not in control livers. Strikingly, overexpression of C20orf204-189AA enhanced cell proliferation and ribosomal RNA transcription. C20orf204-189AA is co-localized, and interacted with nucleolin via the C-terminal and with ribosomal RNA via the N-terminal domain. Furthermore, the expression of C20orf204-189AA upregulates the protein level of nucleolin. Nucleolin and C20orf204 mRNA levels in HCC are correlated with tumor differentiation grade and patient survival, suggesting that C20orf204-189AA is a cancer type-specific fine tuner in some HCC that presents itself for potential targeting therapy and cancer biomarker. Thus, cancer cells exhibit remarkable transcriptome alterations partly by adopting cancer-specific splicing isoforms of noncoding RNAs and may participate in tumor development.

4.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008483

ABSTRACT

Identification of cancer-specific target molecules and biomarkers may be useful in the development of novel treatment and immunotherapeutic strategies. We have recently demonstrated that the expression of long noncoding (lnc) RNAs can be cancer-type specific due to abnormal chromatin remodeling and alternative splicing. Furthermore, we identified and determined that the functional small protein C20orf204-189AA encoded by long intergenic noncoding RNA Linc00176 that is expressed predominantly in hepatocellular carcinoma (HCC), enhances transcription of ribosomal RNAs and supports growth of HCC. In this study we combined RNA-sequencing and polysome profiling to identify novel micropeptides that originate from HCC-specific lncRNAs. We identified nine lncRNAs that are expressed exclusively in HCC cells but not in the liver or other normal tissues. Here, DNase-sequencing data revealed that the altered chromatin structure plays a key role in the HCC-specific expression of lncRNAs. Three out of nine HCC-specific lncRNAs contain at least one open reading frame (ORF) longer than 50 amino acid (aa) and enriched in the polysome fraction, suggesting that they are translated. We generated a peptide specific antibody to characterize one candidate, NONHSAT013026.2/Linc013026. We show that Linc013026 encodes a 68 amino acid micropeptide that is mainly localized at the perinuclear region. Linc013026-68AA is expressed in a subset of HCC cells and plays a role in cell proliferation, suggesting that Linc013026-68AA may be used as a HCC-specific target molecule. Our finding also sheds light on the role of the previously ignored 'dark proteome', that originates from noncoding regions in the maintenance of cancer.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , HeLa Cells , Hep G2 Cells , Humans , Open Reading Frames/genetics , Peptides , Sequence Analysis, RNA/methods
5.
Sci Rep ; 9(1): 17319, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754186

ABSTRACT

The Myc gene has been implicated in the pathogenesis of most types of human cancerous tumors. Myc/Max activates large numbers of pro-tumor genes; however it also induces anti-proliferation genes. When anti-proliferation genes are activated by Myc, cancer cells can only survive if they are downregulated. Hepatocellular carcinoma (HCC) specific intronic long noncoding antisense (lnc-AS) RNA, the EVA1A-AS gene, is located within the second intron (I2) of the EVA1A gene (EVA-1 homolog A) that encodes an anti-proliferation factor. Indeed, EVA1A, but not EVA1A-AS, is expressed in normal liver. Depletion of EVA1A-AS suppressed cell proliferation of HepG2 cells by upregulation of EVA1A. Overexpression of EVA1A caused cell death at the G2/M phase via microtubule catastrophe. Furthermore, suppressed EVA1A expression levels are negatively correlated with differentiation grade in 365 primary HCCs, while EVA1A-AS expression levels are positively correlated with patient survival. Notably, both EVA1A and EVA1A-AS were activated by the Myc/Max complex. Eva1A-AS is transcribed in the opposite direction near the 3'splice site of EVA1A I2. The second intron did not splice out in a U2 dependent manner and EVA1A mRNA is not exported. Thus, the Myc/Max dependent anti-proliferating gene, EVA1A, is controlled by Myc/Max dependent anti-sense noncoding RNA for HCC survival.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Membrane Proteins/genetics , RNA, Long Noncoding/metabolism , RNA, Small Nuclear/metabolism , Apoptosis/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Cell Proliferation/genetics , Datasets as Topic , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Introns/genetics , Liver/pathology , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Long Noncoding/genetics , RNA, Small Interfering/metabolism , RNA-Seq , Up-Regulation
6.
Protein Expr Purif ; 137: 34-42, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28651974

ABSTRACT

A laccase of the basidiomycete Pleurotus pulmonarius (PpuLcc) possessed strong decolorizing abilities towards artificial and natural dyes. The PpuLcc was purified from the culture supernatant via FPLC, and the corresponding gene cloned and expressed in Pichia pastoris GS115. To examine the impact of the C-terminal tail region and the signal peptide on the recombinant expression of PpuLcc, a non-modified version or different truncations (-2, -5, -13 AA) of the target protein were combined with different secretion signals. Heterologous expression of codon optimized constructs resulted in extracellular activities of the PpuLcc variants of up to 7000 U L-1 (substrate ABTS) which was six times higher than non-codon optimized constructs. In contrast to previous works, altering the C-terminal end of the protein did not influence kinetic parameters or the rate of expression. The His-Tag purified enzymes showed high temperature optima (50-70 °C) and thermo stability. All of the recombinant variants degraded triarylmethane and azo dyes. Rapid bleaching of ß-carotene (E 160a) and the polyene acid norbixin (E 160b) using a laccase was found for the first time. Thus, the enzyme may be useful in decolorizing unwanted polyene pigments, for example from the processing of cheese, bakery, desserts, ice cream or coloured casings.


Subject(s)
Coloring Agents/chemistry , Fungal Proteins , Laccase , Pichia/metabolism , Pleurotus/genetics , Carotenoids/chemistry , Fungal Proteins/biosynthesis , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/isolation & purification , Laccase/biosynthesis , Laccase/chemistry , Laccase/genetics , Laccase/isolation & purification , Pichia/chemistry , Pichia/genetics , Pleurotus/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , beta Carotene/chemistry
7.
Cell Signal ; 28(12): 1872-1880, 2016 12.
Article in English | MEDLINE | ID: mdl-27619201

ABSTRACT

Over 100 putative driver genes that are associated with multiple recurrently altered pathways were detected in hepatocellular carcinoma (HCC), suggesting that multiple pathways will need to be inhibited for any therapeutic method to be effective. In this context, functional modification of the RNA regulating protein, tristetraprolin (TTP) that regulates approximately 2500 genes represents a promising strategy in HCC therapy. Since overexpression of TTP induces cell death in all cell types, it would be useful to target the regulator of TTP. In this study, we applied an inhibitor to MAPKAP2 (MK2) that suppresses TTP function. Importantly, cBIOportal for HCC genomics shows that expression level of the MK2 gene correlates with clinical outcome of HCC. We show that upon treatment with MK2 inhibitor, all 5 HCC cell lines, namely HepG2, Huh7, Hep3B, HLE and HLF, reduced cell growth, especially HepG2 and Hep3B cells underwent apoptosis. Simultaneously, TTP target genes such as c-Myc, IER3 or AKT-1 were downregulated. Depletion of the TTP gene rescued cells from apoptosis and restored the TTP-target mRNA expression in the presence of MK2 inhibitor. Furthermore, MK2 was activated in primary HCC that express TTP at high level. The TTP gene was induced upon treatment with DNA methylation inhibitor, 5-aza dC or interferon in three other cell lines, Huh7, HLE or HLF. Upon treatment with MK2 inhibitor and 5-aza dC or interferon these cells underwent apoptosis. The depletion of TTP in these cells partially rescued them from apoptosis, suggesting that the MK2/TTP pathway plays a role in proliferation and maintenance of HCCs. Notably, under the same conditions human hepatocyte cells (THLE-2) did not undergo apoptosis. These data also suggest that MK2 inhibitor with 5-aza dC or interferon may be a useful tool for therapy against HCC.


Subject(s)
Apoptosis/drug effects , Azacitidine/pharmacology , Carcinoma, Hepatocellular/enzymology , DNA Methylation/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Liver Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Tristetraprolin/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Interferon-alpha/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Ki-67 Antigen/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Treatment Outcome , Tristetraprolin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...