Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 203: 116446, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703627

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is detected in estuarine environments, where salinity levels fluctuate regularly. We investigated the effects of salinity on the toxicity of PFOS in embryos and larvae of Cyprinodon variegatus. We crossed six PFOS treatments (0, 1-10,000 µg/L) with two salinities (10, 30 ppt). Larvae exposed to the highest concentration of PFOS under high salinity accumulated over twice the amount of PFOS compared to larvae maintained under low salinity. Embryonic survival was unaffected by PFOS, salinity, or their interaction. PFOS delayed time to hatch and increased salinity reduced time to hatch regardless of PFOS treatment; however, no salinity by PFOS interactions were observed. Conversely, PFOS and salinity interacted in the larval stage, with decreased survival at 30 ppt salinity. This is one of the first studies evaluating interactive effects of PFOS and high salinity and highlights the importance of assessing PFAS toxicity across life stages.

2.
Environ Sci Technol ; 57(48): 19180-19189, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37962853

ABSTRACT

Legacy polyfluoroalkyl substances (PFAS) [perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA)] are being replaced by various other fluorinated compounds, such as hexafluoropropylene oxide dimer acid (GenX). These alternatives are thought to be less bioaccumulative and, therefore, less toxic than legacy PFAS. Contaminant exposures occur concurrently with exposure to natural stressors, including the fungal pathogen Batrachocytrium dendrobatidis (Bd). Despite evidence that other pollutants can increase the adverse effects of Bd on anurans, no studies have examined the interactive effects of Bd and PFAS. This study tested the growth and developmental effects of PFOS, PFOA, and GenX on gray treefrog (Hyla versicolor) tadpoles, followed by a Bd challenge after metamorphosis. Despite PFAS exposure only occurring during the larval stage, carry-over effects on growth were observed post metamorphosis. Further, PFAS interacted with Bd exposure to influence growth; Bd-exposed animals had significantly shorter SVL [snout-vent length (mm)] with significantly increased body condition, among other time-dependent effects. Our data suggest that larval exposure to PFAS can continue to impact growth in the juvenile stage after exposure has ended. Contrary to predictions, GenX affected terrestrial performance more consistently than its legacy congener, PFOA. Given the role of Bd in amphibian declines, further investigation of interactions of PFAS with Bd and other environmentally relevant pathogens is warranted.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Animals , Larva/microbiology , Fluorocarbons/toxicity , Anura/microbiology , Alkanesulfonic Acids/toxicity
3.
Environ Toxicol Chem ; 41(12): 3007-3016, 2022 12.
Article in English | MEDLINE | ID: mdl-36165564

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are chemicals associated with adverse health effects. At aqueous film-forming foam sites, they occur as mixtures, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) commonly co-occurring in the highest concentrations. Although PFOS and PFHxS toxicities have been studied, few studies have tested their potential interaction. Using Rana pipiens, the present study compared toxicities of a 1:1 PFOS:PFHxS mixture to PFOS and PFHxS individually with the prediction that responses would be additive. Gosner stage 25 (GS 25) tadpoles were exposed through metamorphosis (GS 46) to 0.5 and 1 ppb PFOS or PFHxS alone or to a mixture of 0.5 ppb PFOS and 0.5 ppb PFHxS. Tadpoles were weighed and measured (snout-vent length [SVL]) at day 31, metamorphic climax (GS 42), and GS 46. These values were used to calculate the scaled mass index (SMI), a measure of body condition. Body burdens were quantified on day 31 and at GS 46. The PFOS and PFHxS body burdens were elevated relative to controls at GS 46. No effects were observed on survival, SVL, or mass. Single PFAS effects included a 17% reduction in SMI at day 31 (0.5 ppb PFHxS) and a 1.1-day longer metamorphic period (1 ppb PFHxS) relative to controls. Mixture results deviated from additivity-SMIs were higher than expected on day 31 and lower than expected at GS 42. In addition, time to GS 42 in the PFAS mixture exceeded expected additivity by 12 days. Results from a chronic exposure to a 1:1 PFOS:PFHxS mixture resulted in changes in body condition and length of metamorphosis that deviated from additivity. More PFAS mixture toxicity studies conducted at relevant ratios and concentrations are needed. Environ Toxicol Chem 2022;41:3007-3016. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Animals , Fluorocarbons/toxicity , Rana pipiens , Alkanesulfonic Acids/toxicity , Larva
4.
Ecotoxicol Environ Saf ; 166: 186-191, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30269013

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) present in crude oil have been shown to cause the dysregulation of genes important in eye development and function, as well as morphological abnormalities of the eye. However, it is not currently understood how these changes in gene expression are manifested as deficits in visual function. Embryonic red drum (Sciaenops ocellatus) and sheepshead minnow (Cyprinodon variegatus) were exposed to water accommodated fractions (WAFs) of weathered crude oil and assessed for visual function using an optomotor response assay in early life-stage larvae, with subsequent samples taken for histological analysis of the eyes. Larvae of both species exposed to increasing concentrations of oil exhibited a reduced optomotor response. The mean diameters of retinal layers, which play an important role in visual function and image processing, were significantly reduced in oil-exposed sheepshead larvae, though not in red drum larvae. The present study provides evidence that weathered crude oil has a significant effect on visual function in early life-stage fishes.


Subject(s)
Eye/drug effects , Killifishes/growth & development , Perciformes/growth & development , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Eye/anatomy & histology , Eye/growth & development , Killifishes/anatomy & histology , Killifishes/embryology , Killifishes/physiology , Larva/anatomy & histology , Larva/drug effects , Ocular Physiological Phenomena/drug effects , Perciformes/anatomy & histology , Perciformes/embryology , Perciformes/physiology
5.
Sci Rep ; 7: 45680, 2017 04 05.
Article in English | MEDLINE | ID: mdl-28378831

ABSTRACT

Anthropogenic CO2 is expected to drive ocean pCO2 above 1,000 µatm by 2100 - inducing respiratory acidosis in fish that must be corrected through branchial ion transport. This study examined the time course and plasticity of branchial metabolic compensation in response to varying levels of CO2 in an estuarine fish, the red drum, which regularly encounters elevated CO2 and may therefore have intrinsic resilience. Under control conditions fish exhibited net base excretion; however, CO2 exposure resulted in a dose dependent increase in acid excretion during the initial 2 h. This returned to baseline levels during the second 2 h interval for exposures up to 5,000 µatm, but remained elevated for exposures above 15,000 µatm. Plasticity was assessed via gene expression in three CO2 treatments: environmentally realistic 1,000 and 6,000 µatm exposures, and a proof-of-principle 30,000 µatm exposure. Few differences were observed at 1,000 or 6,000 µatm; however, 30,000 µatm stimulated widespread up-regulation. Translocation of V-type ATPase after 1 h of exposure to 30,000 µatm was also assessed; however, no evidence of translocation was found. These results indicate that red drum can quickly compensate to environmentally relevant acid-base disturbances using baseline cellular machinery, yet are capable of plasticity in response to extreme acid-base challenges.


Subject(s)
Acids/metabolism , Adaptation, Physiological , Carbon Dioxide/metabolism , Fishes/physiology , Membrane Transport Proteins/metabolism , Animals , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...