Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2023: 8585839, 2023.
Article in English | MEDLINE | ID: mdl-36909970

ABSTRACT

Describing the processes leading to deforestation is essential for the development and implementation of the forest policies. In this work, two different learning models were developed in order to identify the best possible model for the assessment of the deforestation causes and trends. We developed autoregressive integrated moving average (ARIMA) model and long short-term memory (LSTM) independently in order to see the trend between tree cover loss and carbon dioxide emission. This study includes the twenty-year data of Pakistan on tree cover loss and carbon emission from the Global Forest Watch (GFW) platform, a known platform to get numerical data. Minimum mean absolute error (MAE) for the prediction of tree cover loss and carbon emission obtained through ARIMA model is 0.89 and 0.95, respectively. The minimum MAE given by LSTM model is 0.33 and 0.43, respectively. There is no such kind of study conducted in order to identify the increase in carbon emission due to tree cover loss most specifically in Pakistan. The results endorsed that one of the main causes of increase in the pollution in the environment in terms of carbon emission is due to tree cover loss.


Subject(s)
Trees , Pakistan , Forecasting
2.
Front Public Health ; 11: 1024195, 2023.
Article in English | MEDLINE | ID: mdl-36969684

ABSTRACT

Explainable artificial intelligence (XAI) is of paramount importance to various domains, including healthcare, fitness, skill assessment, and personal assistants, to understand and explain the decision-making process of the artificial intelligence (AI) model. Smart homes embedded with smart devices and sensors enabled many context-aware applications to recognize physical activities. This study presents XAI-HAR, a novel XAI-empowered human activity recognition (HAR) approach based on key features identified from the data collected from sensors located at different places in a smart home. XAI-HAR identifies a set of new features (i.e., the total number of sensors used in a specific activity), as physical key features selection (PKFS) based on weighting criteria. Next, it presents statistical key features selection (SKFS) (i.e., mean, standard deviation) to handle the outliers and higher class variance. The proposed XAI-HAR is evaluated using machine learning models, namely, random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), naive Bayes (NB) and deep learning models such as deep neural network (DNN), convolution neural network (CNN), and CNN-based long short-term memory (CNN-LSTM). Experiments demonstrate the superior performance of XAI-HAR using RF classifier over all other machine learning and deep learning models. For explainability, XAI-HAR uses Local Interpretable Model Agnostic (LIME) with an RF classifier. XAI-HAR achieves 0.96% of F-score for health and dementia classification and 0.95 and 0.97% for activity recognition of dementia and healthy individuals, respectively.


Subject(s)
Artificial Intelligence , Dementia , Humans , Bayes Theorem , Neural Networks, Computer , Awareness
3.
Comput Intell Neurosci ; 2022: 2650742, 2022.
Article in English | MEDLINE | ID: mdl-35909844

ABSTRACT

A genetic disorder is a serious disease that affects a large number of individuals around the world. There are various types of genetic illnesses, however, we focus on mitochondrial and multifactorial genetic disorders for prediction. Genetic illness is caused by a number of factors, including a defective maternal or paternal gene, excessive abortions, a lack of blood cells, and low white blood cell count. For premature or teenage life development, early detection of genetic diseases is crucial. Although it is difficult to forecast genetic disorders ahead of time, this prediction is very critical since a person's life progress depends on it. Machine learning algorithms are used to diagnose genetic disorders with high accuracy utilizing datasets collected and constructed from a large number of patient medical reports. A lot of studies have been conducted recently employing genome sequencing for illness detection, but fewer studies have been presented using patient medical history. The accuracy of existing studies that use a patient's history is restricted. The internet of medical things (IoMT) based proposed model for genetic disease prediction in this article uses two separate machine learning algorithms: support vector machine (SVM) and K-Nearest Neighbor (KNN). Experimental results show that SVM has outperformed the KNN and existing prediction methods in terms of accuracy. SVM achieved an accuracy of 94.99% and 86.6% for training and testing, respectively.


Subject(s)
Machine Learning , Support Vector Machine , Adolescent , Algorithms , Cluster Analysis , Humans
4.
Comput Intell Neurosci ; 2022: 6468870, 2022.
Article in English | MEDLINE | ID: mdl-35990165

ABSTRACT

Advancements in health monitoring using smartphone sensor technologies have made it possible to quantify the functional performance and deviations in an individual's routine. Falling and drowning are significant unnatural causes of silent accidental deaths, which require an ambient approach to be detected. This paper presents the novel ambient assistive framework Falling and Drowning Detection (FaDD) for falling and drowning detection. FaDD perceives input from smartphone sensors, such as accelerometer, gyroscope, magnetometer, and GPS, that provide accurate readings of the movement of an individual's body. FaDD hierarchically recognizes the falling and drowning actions by applying the machine learning model. The approach activates embedding, in a smartphone application, to notify emergency alerts to various stakeholders (i.e., guardian, rescue, and close circle community) about drowning of an individual. FaDD detects falling, drowning, and routine actions with good accuracy of 98%. Furthermore, the FaDD framework enhances coordination to provide more efficient and reliable healthcare services to people.


Subject(s)
Drowning , Smartphone , Drowning/diagnosis , Humans , Machine Learning , Movement
5.
Front Public Health ; 10: 938707, 2022.
Article in English | MEDLINE | ID: mdl-35928494

ABSTRACT

Healthcare information is essential for both service providers and patients. Further secure sharing and maintenance of Electronic Healthcare Records (EHR) are imperative. EHR systems in healthcare have traditionally relied on a centralized system (e.g., cloud) to exchange health data across healthcare stakeholders, which may expose private and sensitive patient information. EHR has struggled to meet the demands of several stakeholders and systems in terms of safety, isolation, and other regulatory constraints. Blockchain is a distributed, decentralized ledger technology that can provide secured, validated, and immutable data sharing facilities. Blockchain creates a distributed ledger system using techniques of cryptography (hashes) that are consistent and permit actions to be carried out in a distributed manner without needing a centralized authority. Data exploitation is difficult and evident in a blockchain network due to its immutability. We propose an architecture based on blockchain technology that authenticates the user identity using a Proof of Stake (POS) cryptography consensus mechanism and Secure Hash Algorithm (SHA256) to secure EHR sharing among different electronic healthcare systems. An Elliptic Curve Digital Signature Algorithm (ECDSA) is used to verify EHR sensors to assemble and transmit data to cloud infrastructure. Results indicate that the proposed solution performs exceptionally well when compared with existing solutions, which include Proof-Of-Work (POW), Secure Hash Algorithm (SHA-1), and Message Digest (MD5) in terms of power consumption, authenticity, and security of healthcare records.


Subject(s)
Blockchain , Cloud Computing , Delivery of Health Care , Electronic Health Records , Electronics , Humans
6.
Front Psychol ; 13: 970789, 2022.
Article in English | MEDLINE | ID: mdl-36003113

ABSTRACT

Investigating prior methodologies, it has come to our knowledge that in smart cities, a disaster management system needs an autonomous reasoning mechanism to efficiently enhance the situation awareness of disaster sites and reduce its after-effects. Disasters are unavoidable events that occur at anytime and anywhere. Timely response to hazardous situations can save countless lives. Therefore, this paper introduces a multi-agent system (MAS) with a situation-awareness method utilizing NB-IoT, cyan industrial Internet of things (IIOT), and edge intelligence to have efficient energy, optimistic planning, range flexibility, and handle the situation promptly. We introduce the belief-desire-intention (BDI) reasoning mechanism in a MAS to enhance the ability to have disaster information when an event occurs and perform an intelligent reasoning mechanism to act efficiently in a dynamic environment. Moreover, we illustrate the framework using a case study to determine the working of the proposed system. We develop ontology and a prototype model to demonstrate the scalability of our proposed system.

7.
Comput Intell Neurosci ; 2022: 7210928, 2022.
Article in English | MEDLINE | ID: mdl-35800696

ABSTRACT

Softwares are involved in all aspects of healthcare, such as booking appointments to software systems that are used for treatment and care of patients. Many vendors and consultants develop high quality software healthcare systems such as hospital management systems, medical electronic systems, and middle-ware softwares in medical devices. Internet of Things (IoT) medical devices are gaining attention and facilitate the people with new technology. The health condition of the patients are monitored by the IoT devices using sensors, specifically brain diseases such as Alzheimer, Parkinson's, and Traumatic brain injury. Embedded software is present in IoT medical devices and the complexity of software increases day-by-day with the increase in the number and complexity of bugs in the devices. Bugs present in IoT medical devices can have severe consequences such as inaccurate records, circulatory suffering, and death in some cases along with delay in handling patients. There is a need to predict the impact of bugs (severe or nonsevere), especially in case of IoT medical devices due to their critical nature. This research proposes a hybrid bug severity prediction model using convolution neural network (CNN) and Harris Hawk optimization (HHO) based on an optimized hyperparameter of CNN with HHO. The dataset is created, that consists of the bugs present in healthcare systems and IoT medical devices, which is used for evaluation of the proposed model. A preprocessing technique on textual dataset is applied along with a feature extraction technique for CNN embedding layer. In HHO, we define the hyperparameter values of "Batch Size, Learning Rate, Activation Function, Optimizer Parameters, and Kernel Initializers," before training the model. Hybrid model CNN-HHO is applied, and a 10-fold cross validation is performed for evaluation. Results indicate an accuracy of 96.21% with the proposed model.


Subject(s)
Alzheimer Disease , Internet of Things , Algorithms , Alzheimer Disease/diagnosis , Humans , Neural Networks, Computer , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...