Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38003976

ABSTRACT

Streptococcus pneumoniae (S. pneumoniae) is a bacterial species often associated with the occurrence of community-acquired pneumonia (CAP). CAP refers to a specific kind of pneumonia that occurs in individuals who acquire the infection outside of a healthcare setting. It represents the leading cause of both death and morbidity on a global scale. Moreover, the declaration of S. pneumoniae as one of the 12 leading pathogens was made by the World Health Organization (WHO) in 2017. Antibiotics like ß-lactams, macrolides, and fluoroquinolones are the primary classes of antimicrobial medicines used for the treatment of S. pneumoniae infections. Nevertheless, the efficacy of these antibiotics is diminishing as a result of the establishment of resistance in S. pneumoniae against these antimicrobial agents. In 2019, the WHO declared that antibiotic resistance was among the top 10 hazards to worldwide health. It is believed that penicillin-binding protein genetic alteration causes ß-lactam antibiotic resistance. Ribosomal target site alterations and active efflux pumps cause macrolide resistance. Numerous factors, including the accumulation of mutations, enhanced efflux mechanisms, and plasmid gene acquisition, cause fluoroquinolone resistance. Furthermore, despite the advancements in pneumococcal vaccinations and artificial intelligence (AI), it is not feasible for individuals to rely on them indefinitely. The ongoing development of AI for combating antimicrobial resistance necessitates more research and development efforts. A few strategies can be performed to curb this resistance issue, including providing educational initiatives and guidelines, conducting surveillance, and establishing new antibiotics targeting another part of the bacteria. Hence, understanding the resistance mechanism of S. pneumoniae may aid researchers in developing a more efficacious antibiotic in future endeavors.


Subject(s)
Anti-Infective Agents , Community-Acquired Infections , Pneumonia , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Streptococcus pneumoniae , Fluoroquinolones/pharmacology , Fluoroquinolones/therapeutic use , beta-Lactams/pharmacology , beta-Lactams/therapeutic use , Macrolides/pharmacology , Macrolides/therapeutic use , Artificial Intelligence , Drug Resistance, Bacterial , Pneumonia/drug therapy , Community-Acquired Infections/drug therapy , Community-Acquired Infections/microbiology
2.
Microorganisms ; 11(10)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37894063

ABSTRACT

Multidrug resistance in bacterial strains known as superbugs is estimated to cause fatal infections worldwide. Migration and urbanization have resulted in overcrowding and inadequate sanitation, contributing to a high risk of superbug infections within and between different communities. The CRISPR-Cas system, mainly type II, has been projected as a robust tool to precisely edit drug-resistant bacterial genomes to combat antibiotic-resistant bacterial strains effectively. To entirely opt for its potential, advanced development in the CRISPR-Cas system is needed to reduce toxicity and promote efficacy in gene-editing applications. This might involve base-editing techniques used to produce point mutations. These methods employ designed Cas9 variations, such as the adenine base editor (ABE) and the cytidine base editor (CBE), to directly edit single base pairs without causing DSBs. The CBE and ABE could change a target base pair into a different one (for example, G-C to A-T or C-G to A-T). In this review, we addressed the limitations of the CRISPR/Cas system and explored strategies for circumventing these limitations by applying diverse base-editing techniques. Furthermore, we also discussed recent research showcasing the ability of base editors to eliminate drug-resistant microbes.

3.
Infect Dis Ther ; 10(4): 2291-2307, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34319552

ABSTRACT

INTRODUCTION: Antiviral drugs have shown limited effectiveness in treating patients with coronavirus disease 2019 (COVID-19). We aimed to assess the effects of a favipiravir and hydroxychloroquine combination on treating moderate-to-severe COVID-19 patients. METHODS: An investigator-initiated, multicenter, open-label, randomized trial at nine hospitals. Eligible patients were adults with moderate-to-severe COVID-19 defined as oxygen saturation (SaO2) of ≤ 94% while breathing ambient air or significant clinical symptoms with chest x-ray changes requiring hospital admission. Randomization was in a 1:1 ratio to receive standard care (control group) or standard care plus favipiravir and hydroxychloroquine. The primary outcome was time to clinical improvement of two points (from the status at randomization) on a seven-category ordinal scale or live discharge from the hospital within 14 days. Analyses were done in an intention-to-treat population. RESULTS: From May 2020 to Jan 2021, 254 patients were enrolled; 129 were assigned to standard of care and 125 to the treatment. The mean age was 52 (± 13) years, and 103 (41%) were women. At randomization, six patients were on invasive mechanical ventilation, 229 (90.15%) were requiring supplemental oxygen only (with or without non-invasive ventilation), and 19 (7.48%) were receiving neither. The time to clinical improvement was not significantly different between the groups: median of 9 days in the treatment group and 7 days in the control group (HR: 0.845; 95% CI 0.617-1.157; p-value = 0.29). The 28-day mortality was not significantly different between the groups (7.63% treatment) vs. (10.32% control); p-value = 0.45. The most prevalent adverse events were headache, elevation in ALT, and the prolonged QTc interval in the treatment group. CONCLUSION: The combination of favipiravir and hydroxychloroquine did not result in a statistically significant clinical benefit in patients with moderate-to-severe COVID-19. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT04392973).

4.
Trials ; 21(1): 904, 2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33129363

ABSTRACT

OBJECTIVES: The selected combination was based on limited evidence clinically and in vitro on the efficacy of the Favipiravir and Hydroxychloroquine in SARS-CoV-2. The two medications were listed in many guidelines as treatment options and ongoing trials assessing their efficacy and safety. Thus, we want to prove the clinical effectiveness of the combination as therapy. TRIAL DESIGN: This is an Open label, multicenter, randomized controlled clinical trial to evaluate the safety and efficacy of novel therapeutic agents in hospitalized adults diagnosed with COVID-19. It is a multicenter trial that will compare Favipiravir plus Hydroxychloroquine combination (experimental arm) to a control arm. PARTICIPANTS: All study procedures will be conducted in eight centres in Saudia Arabia: King Abdulaziz Medical City National Guard Health Affairs in Riyadh. King Abdulaziz Hospital - Al Ahsa, Saudi Arabia AlMadina General Hospital, Madnia, Saudi Arabia Al-Qatif Central Hospital, Saudi Arabia Imam Abdulrahman Al Faisal Hospital, Dammam, Saudi Arabia King Abdulaziz Medical City, Jeddah, Saudi Arabia King Abdulaziz Hospital, Makkah, Saudi Arabia Imam Abdulrahman Alfaisal Hospital, Riyadh, Saudi Arabia Inclusion Criteria • Should be at least 18 years of age, • Male or nonpregnant female, • Diagnosed with COVID-19 by PCR confirmed SARS-coV-2 viral infection. • Able to sign the consent form and agree to clinical samples collection (or their legal surrogates if subjects are or become unable to make informed decisions).. • Moderate or Severe COVID-19, defined as oxygen saturation (Sao2) of 94% or less while they were breathing ambient air or significant clinical symptoms that require hospital admission. • patients had to be enrolled within 10 days of disease onset. Exclusion Criteria • Patients who are pregnant or breastfeeding. • Will be transferred to a non-study site hospital or discharged from hospital within 72 hours. • Known sensitivity/allergy to hydroxychloroquine or Favipiravir • Current use of hydroxychloroquine for another indication • Prior diagnosis of retinopathy • Prior diagnosis of glucose-6-phosphate dehydrogenase (G6PD) deficiency • Major comorbidities increasing the risk of study drug including: i. Hematologic malignancy, ii. Advanced (stage 4-5) chronic kidney disease or dialysis therapy, iii. Known history of ventricular arrhythmias, iv. Current use of drugs that prolong the QT interval, Severe liver damage (Child-Pugh score ≥ C, AST> 5 times the upper limit), HIV. • The investigator believes that participating in the trial is not in the best interests of the patient, or the investigator considers unsuitable for enrollment (such as unpredictable risks or subject compliance issues). • Clinical prognostic non-survival, palliative care, or in deep coma and no have response to supportive treatment within three hours of admission • Patient with irregular rhythm • Patient with a history of heart attack (myocardial infarction) • Patient with a family history of sudden death from heart attack before the age of 50 • Take other drugs that can cause prolonged QT interval • Patient who is receiving immunosuppressive therapy (cyclosporin) which cannot be switched to another agent or adjusted while using the investigational drug • Gout/history of Gout or hyperuricemia (above the ULN), hereditary xanthinuria or xanthine calculi of the urinary tract. INTERVENTION AND COMPARATOR: The treatment intervention would be for a maximum of 10 days from randomization and it would be as follows: Favipiravir for 10 days: Administer 1800 mg (9 tablets) by mouth twice daily for one day, followed by 800mg (4 tablets) twice daily (total days of therapy is 10 days) Hydroxychloroquine for 5 days: (400mg) twice daily on day 1; for days 2-5 (200mg) twice daily. Reference Comparator Therapy: Standard of care is defined as: Treatment that is accepted by medical experts as a proper treatment for Covid-19 disease. Standard care comprised of, as necessary, supplemental oxygen, noninvasive and invasive ventilation, antibiotic agents, vasopressor support, renal-replacement therapy, extracorporeal membrane oxygenation (ECMO), and antiviral therapy except Favipiravir. Also, it may include intravenous fluids and medications for symptoms relief . MAIN OUTCOMES: The primary endpoint is the time to clinical improvement, defined as the time from randomization to an improvement of two points (from the status at randomization) on a seven-category ordinal scale or live discharge from the hospital, whichever came first (14 days from Randomization). RANDOMISATION: Eligible participants will be randomized in a 1:1 ratio to either the combination group (Favipiravir and Hydroxychloroquine) or a control group. The patients will be randomized utilizing Web based data entry System with a stratification based on the centre and the ICU admission. BLINDING (MASKING): This is an Open label study and only the analyst will be blinded during the study conduct. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): Under the classical two arm parallel design the total effective sample sizes needed is 472 subjects (236 subjects per group). TRIAL STATUS: Protocol version 3.1 (dated 11 Aug 2020), and currently recruitment is ongoing. The date recruitment started was May 21, 2020 and the investigators anticipate the trial will finish recruiting by the end of December 2020. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04392973 , 19 May 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus/pathogenicity , Coronavirus Infections/drug therapy , Hydroxychloroquine/therapeutic use , Pneumonia, Viral/drug therapy , Pyrazines/therapeutic use , Amides/adverse effects , Antiviral Agents/adverse effects , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Drug Therapy, Combination , Female , Host-Pathogen Interactions , Humans , Hydroxychloroquine/adverse effects , Inpatients , Male , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Pyrazines/adverse effects , Randomized Controlled Trials as Topic , SARS-CoV-2 , Saudi Arabia , Time Factors , Treatment Outcome , COVID-19 Drug Treatment
5.
Int J Infect Dis ; 90: 167-169, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31689527

ABSTRACT

We here present a young patient who developed fever, headache, maculopapular skin rash and an eschar 3 days following a tick bite. Serology for Rickettsia was consistent with acute spotted fever group (SFG) infection. He had a dramatic response to doxycycline. Vectors for rickettsia transmission are shown in a number of studies from Saudi Arabia while human serological studies from Oman revealed that these infections are common among the rural population. Surprisingly, despite the existence of potential vectors, this disease is rarely reported from the Arab Gulf countries. To the best of our knowledge this is the first case report of SFG acquired within Saudi Arabia. SFG should be considered in the differential diagnosis of febrile illness and exposure history.


Subject(s)
Rickettsia Infections/diagnosis , Rickettsia/isolation & purification , Adolescent , Adult , Anti-Bacterial Agents/administration & dosage , Doxycycline/administration & dosage , Humans , Male , Oman , Rickettsia/classification , Rickettsia/genetics , Rickettsia Infections/drug therapy , Rickettsia Infections/microbiology , Saudi Arabia , Tick Bites/diagnosis , Tick Bites/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...