Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(1): 863-870, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458537

ABSTRACT

Silicon carbide (SiC)-based ceramic matrix composites (CMCs) are utilized for their refractory properties in the aerospace industry. The composition and structure of these materials are crucial to maintaining the strength, toughness, oxidation, and creep resistances that are desired of silicon carbide. This work analyzes the chemical composition of the matrix in batches of SiC/SiC (silicon carbide fiber-reinforced silicon carbide matrix) minicomposites that are processed by chemical vapor infiltration of the BN interphase and SiC matrix on single Hi-Nicalon Type S fiber tows using a range of processing parameters. The analysis was performed here to investigate the potential causes of variation in matrix tensile strength in the various batches of minicomposites. Six different morphologies present in the silicon carbide matrix were observed: smooth, nodular, rough nodular, bumpy, nucleated, and plate-like. It was found that high-matrix tensile strength minicomposite batches contained solely the smooth morphology, while low-matrix tensile strength minicomposite batches contained a variety of other morphologies. FIB/TEM was used to study the atomic and crystal character of each individual morphology. Smooth SiC is oriented by the (111) planes and is primarily SiC, while the other morphologies are randomly oriented and contain significant oxygen. These results match the tensile strength tests, which pointed to smooth SiC as the strongest matrix material.

2.
ACS Omega ; 5(38): 24811-24817, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33015499

ABSTRACT

Silicon carbide coated onto Hi-Nicalon Type S fiber is of great interest to the aerospace industry. This work focuses on tuning the reaction parameters of atmospheric pressure SiC CVI using CH3SiCl3 to control the morphology of the coatings produced. Depth of CH3SiCl3 from 1 to 14 cm, temperature from 1000 to 1100 °C, and flow rate of H2 carrier gas from 5 to 30 SCCM were examined. Coating morphologies ranged from smooth to very nodular, where spherical growths were present along the entire deposition zone. The parameters that yielded a smooth deposition throughout the 20 cm deposition zone were 4-6 cm of CH3SiCl3(l) depth, 1100 °C, and 10 SCCM of H2 as a carrier gas. Tensile testing using acoustic emission sensors was performed on SiCf/BN/CVI-SiC minicomposites with different coating morphologies. The tensile tests revealed that smooth coatings have better mechanical performance than the nodular coatings; nodular coatings promote premature ultimate brittle failure, while smooth coatings exhibit toughening mechanisms. Smooth coatings had higher average matrix cracking strength (248 MPa) and ultimate tensile strength (541 MPa) than average nodular coating matrix cracking strength (147 MPa) and ultimate strength (226 MPa).

3.
J Eur Ceram Soc ; 37(10): 3241-3253, 2017 Aug.
Article in English | MEDLINE | ID: mdl-32020993

ABSTRACT

SiC based composite materials commonly have protective silica surface in air. Under humid environments at high temperatures, like occur in jet engines, the silica surface layer reacts with water molecules to form volatile silicon hydroxide (Si(OH)4) and the protection is reduced which cause jet engine degradation. An alternative approach to protect SiC based composites would be to infiltrate the SiC matrix via slurry with an oxide material that is resistant to the high-temperature and humid environment. As proof of concept, aqueous based mullite particle slurries were infiltrated by pressurized flow and by capillarity of the wetting slurry on the external surface of the porous SiC matrix of single-fiber-tow SiC/SiC minicomposites. Minicomposites were precracked at room temperature during tensile tests then tested in tensile creep in air at 1200 °C to study the degree of protection that the infiltrated mullite provided at high temperatures. Next, fracture surfaces were examined using SEM.

SELECTION OF CITATIONS
SEARCH DETAIL
...