Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115289

ABSTRACT

The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinate interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.

2.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36697255

ABSTRACT

During meiosis, programmed double-strand DNA breaks are repaired to form exchanges between the parental chromosomes called crossovers. Chromosomes lacking a crossover fail to segregate accurately into the gametes, leading to aneuploidy. In addition to engaging the homolog, crossover formation requires the promotion of exchanges, rather than non-exchanges, as repair products. However, the mechanism underlying this meiosis-specific preference is not fully understood. Here, we study the regulation of meiotic sister chromatid exchanges in Caenorhabditis elegans by direct visualization. We find that a conserved chromosomal interface that promotes exchanges between the parental chromosomes, the synaptonemal complex, can also promote exchanges between the sister chromatids. In both cases, exchanges depend on the recruitment of the same set of pro-exchange factors to repair sites. Surprisingly, although the synaptonemal complex usually assembles between the two DNA molecules undergoing an exchange, its activity does not rely on a specific chromosome conformation. This suggests that the synaptonemal complex regulates exchanges-both crossovers and sister exchanges-by establishing a nuclear domain conducive to nearby recruitment of exchange-promoting factors.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Synaptonemal Complex/genetics , Caenorhabditis elegans Proteins/genetics , Chromatids/genetics , DNA
3.
STAR Protoc ; 3(2): 101344, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35509971

ABSTRACT

Reciprocal exchanges between genetically identical sister chromatids (sister chromatid exchanges or SCEs) have been challenging to study. Here, we describe a protocol that utilizes a pulse/chase of the thymidine analog 5-ethyl-3'-deoxyuridine (EdU) in combination with click chemistry and antibody labeling to selectively label sister chromatids in the C. elegans germline. Labeling has no discernable effects on meiosis, allowing for cytological quantification of SCEs. This protocol can be combined with a variety of imaging approaches, including STED, confocal and super-resolution. For complete details on the use and execution of this protocol, please refer to Almanzar et al. (2021).


Subject(s)
Caenorhabditis elegans , Deoxyuridine/chemistry , Sister Chromatid Exchange , Animals , Caenorhabditis elegans/genetics , Germ Cells , Meiosis , Nucleotides
4.
Curr Biol ; 31(7): 1499-1507.e3, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33740426

ABSTRACT

Sexual reproduction shuffles the parental genomes to generate new genetic combinations. To achieve that, the genome is subjected to numerous double-strand breaks, the repair of which involves two crucial decisions: repair pathway and repair template.1 Use of crossover pathways with the homologous chromosome as template exchanges genetic information and directs chromosome segregation. Crossover repair, however, can compromise the integrity of the repair template and is therefore tightly regulated. The extent to which crossover pathways are used during sister-directed repair is unclear because the identical sister chromatids are difficult to distinguish. Nonetheless, indirect assays have led to the suggestion that inter-sister crossovers, or sister chromatid exchanges (SCEs), are quite common.2-11 Here we devised a technique to directly score physiological SCEs in the C. elegans germline using selective sister chromatid labeling with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU). Surprisingly, we find SCEs to be rare in meiosis, accounting for <2% of repair events. SCEs remain rare even when the homologous chromosome is unavailable, indicating that almost all sister-directed repair is channeled into noncrossover pathways. We identify two mechanisms that limit SCEs. First, SCEs are elevated in the absence of the RecQ helicase BLMHIM-6. Second, the synaptonemal complex-a conserved interface that promotes crossover repair12,13-promotes SCEs when localized between the sisters. Our data suggest that crossover pathways in C. elegans are only used to generate the single necessary link between the homologous chromosomes. Noncrossover pathways repair almost all other breaks, regardless of the repair template.


Subject(s)
Caenorhabditis elegans , Meiosis , Sister Chromatid Exchange , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins , Chromatids/genetics , DNA Breaks, Double-Stranded , DNA Repair
SELECTION OF CITATIONS
SEARCH DETAIL