Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Life (Basel) ; 13(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38004282

ABSTRACT

Coronary artery disease (CAD) is the leading cause of death and hospitalization worldwide and represents a problem for public health systems everywhere. In Saudi Arabia, the prevalence of CAD is estimated to be 5.5%. Risk factors for CAD include older age, male gender, obesity, high blood pressure, smoking, diabetes, hyperlipidemia, and genetic factors. Reducing the risk factors in susceptible individuals will decrease the prevalence of CAD. Genome wide association studies have helped to reveal the association of many loci with diseases like CAD. In this study, we examined the link between single nucleotide variations (SNVs) of TNF-α-rs1800629 G>A, CYP2C19*17 (rs12248560) C>T, and miR-423 rs6505162 C>A and the expression of TNF-α with CAD. We used the mutation specific PCR, ARMS-PCR, and ELISA. The results showed that the A allele of the TNF-α rs1800629 G>A SNP is linked to CAD with odd ratio (OR) (95% CI) = 2.10, p-value = 0.0013. The T allele of the CYP2C19*17 (rs12248560) C>T is linked to CAD with OR (95% CI) = 2.02, p-value = 0.003. In addition, the A allele of the miR-423 rs6505162 C>A SNV is linked to CAD with OR (95% CI) = 1.49, p-value = 0.036. The ELISA results indicated that the TNF-α serum levels are significantly increased in CAD patients compared to healthy controls. We conclude the TNF-α rs1800629 G>A, CYP2C19*17, and miR-423 rs6505162 C>A are potential genetic loci for CAD in the Saudi population. These findings require further verification in future studies. After being verified, our results might be utilized in genetic testing to identify individuals that are susceptible to CAD and, therefore, for whom reducing modifiable risk factors (e.g., poor diet, diabetes, obesity, and smoking) would result in prevention or delay of CAD.

2.
Biomedicines ; 11(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38001931

ABSTRACT

Targeting foam cells reduces the risk and pathophysiology of atherosclerosis, of which they are one of its early hallmarks. The precise mechanism of action of fucoidan, a potential anti-atherogenic drug, is still unknown. Our objective was to assess the ability of fucoidan to regulate expression of ATP-binding cassette transporter A1 (ABCA1) in ox-LDL-induced THP-1 macrophages. Molecular docking was used to predict how fucoidan interacts with anti-foam cell markers, and further in vitro experiments were performed to evaluate the protective effect of fucoidan on modulating uptake and efflux of lipids. THP-1 macrophages were protected by 50 µg/mL of fucoidan and were then induced to form foam cells with 25 µg/mL of ox-LDL. Expression levels were assessed using RT-qPCR, and an Oil Red O stain was used to observe lipid accumulation in THP-1 macrophages. In addition, ABCA1 protein was examined by Western blot, and cellular cholesterol efflux was determined using fluorescently labeled cholesterol. Under a light microscope, decreased lipid accumulation in ox-LDL-induced-THP-1 macrophages pre-treated with fucoidan showed a significant effect, although it did not affect the expression of scavenger receptors (SR-AI and CD36). It is interesting to note that fucoidan dramatically increased the gene and protein expression of ABCA1, perhaps via the liver X receptor-α (LXR-α). Moreover, fucoidan's ability to increase and control the efflux of cholesterol from ox-LDL-induced THP-1 macrophages revealed how it may alter ABCA1's conformation and have a major effect on how it interacts with apolipoprotein A (ApoA1). In vitro results support a rationale for predicting fucoidan and its interaction with its receptor targets' predicted data, hence validating its anti-atherogenic properties and suggesting that fucoidan could be promising as an atheroprotective.

3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613720

ABSTRACT

Atherosclerosis is a chronic inflammation characterized by macrophage infiltration, lipid deposition, and arterial wall thickening. Prevention of atherosclerosis by nutraceuticals is gaining attention. Myricetin, a dietary flavonol, is claimed to possess anti-atherosclerosis properties. We studied myricetin's effect on the atherosclerosis-associated molecular mechanism. Cytotoxicity and proliferation testing to check the viability of myricetin-treated THP-1 macrophages and monocyte migration study in the presence and absence of myricetin was performed. The whole transcriptome analysis was conducted using the Affymetrix microarray platform. The Partek genomics suite for detecting differentially expressed genes (DEGs) and ingenuity pathway analysis was used to identify canonical pathways. Cytotoxicity assays exhibited no significant toxicity in THP-1 macrophages treated with different myricetin concentrations (10-200 µM). Genome-wide expression profiling revealed 58 DEGs (53 upregulated and 5 downregulated) in myricetin-treated THP-1 macrophages. Pathway analysis revealed inhibition of LXR/RXR activation and angiogenesis inhibition by thrombospondin-1 and activated phagocytosis in myricetin-treated THP-1 macrophages. The cytotoxicity assay shows myricetin as a safe phytochemical. In vitro and in silico pathway studies on THP-1 macrophages showed that they can inhibit THP-1 monocyte migration and alter the cholesterol efflux mediated via LXR/RXR signaling. Therefore, myricetin could help in the prevention of cell infiltration in atherosclerotic plaque with reduced risk of stroke or brain damage.


Subject(s)
Atherosclerosis , Macrophages , Humans , Liver X Receptors/genetics , Liver X Receptors/metabolism , Macrophages/metabolism , Atherosclerosis/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism
4.
Life (Basel) ; 13(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36675976

ABSTRACT

The function of noncoding sequence variations at ZNF143 binding sites in breast cancer cells is currently not well understood. Distal elements and promoters, also known as cis-regulatory elements, control the expression of genes. They may be identified by functional genomic techniques and sequence conservation, and they frequently show cell- and tissue-type specificity. The creation, destruction, or modulation of TF binding and function may be influenced by genetic modifications at TF binding sites that affect the binding affinity. Therefore, noncoding mutations that affect the ZNF143 binding site may be able to alter the expression of some genes in breast cancer. In order to understand the relationship among ZNF143, gene expression patterns, and noncoding mutations, we adopted an integrative strategy in this study and paid close attention to putative immunological signaling pathways. The immune system-related pathways ErbB, HIF1a, NF-kB, FoxO, JAK-STAT, Wnt, Notch, cell cycle, PI3K-AKT, RAP1, calcium signaling, cell junctions and adhesion, actin cytoskeleton regulation, and cancer pathways are among those that may be significant, according to the overall analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...